Skip to main content
Physics LibreTexts

25.3: Rolling Without Slipping - Two Views

  • Page ID
    30534
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Think of a hoop, mass \(M\) radius \(R\), rolling along a flat plane at speed \(V\). It has translational kinetic energy \(\frac{1}{2} M V^{2}\), angular velocity \(\Omega=V / R\), and moment of inertia \(I=M R^{2}\) so its angular kinetic energy \(\frac{1}{2} I \Omega^{2}=\frac{1}{2} M V^{2}\) and its total kinetic energy is \(M V^{2}\).

    But we could also have thought of it as rotating about the point of contact—remember, that point of the hoop is momentarily at rest. The angular velocity would again be \(\Omega\), but now with moment of inertia, from the parallel axes theorem, \(I=M R^{2}+M R^{2}=2 M R^{2}\), giving same total kinetic energy, but now all rotational.


    This page titled 25.3: Rolling Without Slipping - Two Views is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?