Skip to main content
Physics LibreTexts

13.5: Matrix and Tensor Formulations of Rigid-Body Rotation

  • Page ID
    9630
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The prior notation is clumsy and can be streamlined by use of matrix methods. Write the inertia tensor in a matrix form as

    \[\{\mathbb{I}\}= \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix}\]

    The angular velocity and angular momentum both can be written as a column vectors, that is

    \[\boldsymbol{\omega}=\begin{pmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3}
    \end{pmatrix} \quad \mathbf{L}=\begin{pmatrix} L_{1} \\ L_{2} \\ L_{3} \end{pmatrix}\]

    As discussed in appendix \(19.5.2\), Equation \(13.4.7\) now can be written in tensor notation as an inner product of the form

    \[L = \{\mathbb{I}\} \cdot \boldsymbol{\omega} \]

    Note that the above notation uses boldface for the inertia tensor \(\mathbb{I}\), implying a rank-2 tensor representation, while the angular velocity \(\boldsymbol{\omega}\) and the angular momentum \(\mathbf{L}\) are written as column vectors. The inertia tensor is a 9-component rank-2 tensor defined as the ratio of the angular momentum vector \(\mathbf{L}\) and the angular velocity \(\boldsymbol{\omega}\).

    \[\{\mathbb{I}\} = \frac{\mathbf{L}}{\boldsymbol{\omega}}\]

    Note that, as described in appendix \(19.5\), the inner product of a vector \(\boldsymbol{\omega}\), which is the rank 1 tensor, and a rank 2 tensor \(\{\mathbb{I}\}\), leads to the vector \(\mathbf{L}\). This compact notation exploits the fact that the matrix and tensor representation are completely equivalent, and are ideally suited to the description of rigid-body rotation.


    This page titled 13.5: Matrix and Tensor Formulations of Rigid-Body Rotation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.