# 13.5: Matrix and Tensor Formulations of Rigid-Body Rotation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The prior notation is clumsy and can be streamlined by use of matrix methods. Write the inertia tensor in a matrix form as

$\{\mathbb{I}\}= \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix}$

The angular velocity and angular momentum both can be written as a column vectors, that is

$\boldsymbol{\omega}=\begin{pmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3} \end{pmatrix} \quad \mathbf{L}=\begin{pmatrix} L_{1} \\ L_{2} \\ L_{3} \end{pmatrix}$

As discussed in appendix $$19.5.2$$, Equation $$13.4.7$$ now can be written in tensor notation as an inner product of the form

$L = \{\mathbb{I}\} \cdot \boldsymbol{\omega}$

Note that the above notation uses boldface for the inertia tensor $$\mathbb{I}$$, implying a rank-2 tensor representation, while the angular velocity $$\boldsymbol{\omega}$$ and the angular momentum $$\mathbf{L}$$ are written as column vectors. The inertia tensor is a 9-component rank-2 tensor defined as the ratio of the angular momentum vector $$\mathbf{L}$$ and the angular velocity $$\boldsymbol{\omega}$$.

$\{\mathbb{I}\} = \frac{\mathbf{L}}{\boldsymbol{\omega}}$

Note that, as described in appendix $$19.5$$, the inner product of a vector $$\boldsymbol{\omega}$$, which is the rank 1 tensor, and a rank 2 tensor $$\{\mathbb{I}\}$$, leads to the vector $$\mathbf{L}$$. This compact notation exploits the fact that the matrix and tensor representation are completely equivalent, and are ideally suited to the description of rigid-body rotation.

This page titled 13.5: Matrix and Tensor Formulations of Rigid-Body Rotation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.