# 13.3: Rigid-body Rotation about a Body-Fixed Point

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

With respect to some point $$O$$ fixed in the body coordinate system, the angular momentum of the body $$\alpha$$ is given by

$\mathbf{L} = \sum^{n}_i \mathbf{L}_i = \sum^n_i \mathbf{r}_i \times \mathbf{p}_i$

There are two especially convenient choices for the fixed point $$O$$. If no point in the body is fixed with respect to an inertial coordinate system, then it is best to choose $$O$$ as the center of mass. If one point of the body is fixed with respect to a fixed inertial coordinate system, such as a point on the ground where a child’s spinning top touches, then it is best to choose this stationary point as the body-fixed point $$O$$.

Consider a rigid body composed of $$N$$ particles of mass $$m_{\alpha}$$ where $$\alpha = 1, 2, 3, \dots N$$. As discussed in chapter $$12.4$$, if the body rotates with an instantaneous angular velocity $$\boldsymbol{\omega}$$ about some fixed point, with respect to the body-fixed coordinate system, and this point has an instantaneous translational velocity $$\mathbf{V}$$ with respect to the fixed (inertial) coordinate system, see Figure $$\PageIndex{1}$$, then the instantaneous velocity $$\mathbf{v}_{\alpha}$$ of the $$\alpha^{th}$$ particle in the fixed frame of reference is given by

$\mathbf{v}_{\alpha} = \mathbf{V} + \mathbf{v}^{\prime\prime}_{\alpha} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}$

However, for a rigid body, the velocity of a body-fixed point with respect to the body is zero, that is $$\mathbf{v}^{\prime\prime}_{\alpha} = 0$$, thus

$\mathbf{v}_{\alpha} = \mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{ \alpha}$

Consider the translational velocity of the body-fixed point $$O$$ to be zero, i.e. $$\mathbf{V} = 0$$ and let $$\mathbf{R} = 0$$, then $$\mathbf{r}_{\alpha} = \mathbf{r}^{\prime}_{\alpha}$$. These assumptions allow the linear momentum of the particle $$\alpha$$ to be written as

$\mathbf{p}_{\alpha} = m_{\alpha} \mathbf{v}_{\alpha} = m_{\alpha} \boldsymbol{\omega} \times \mathbf{ r}_{\alpha}$

Therefore

$\mathbf{L} = \sum^N_{\alpha} \mathbf{r}_{\alpha} \times \mathbf{ p}_{\alpha} = \sum^N_{\alpha} m_{\alpha} \mathbf{r}_{\alpha} \times (\boldsymbol{\omega} \times\mathbf{ r}\alpha )$

Using the vector identity

$\mathbf{A} \times (\mathbf{B} \times \mathbf{ A}) = A^2\mathbf{B} − \mathbf{A} (\mathbf{A} \cdot \mathbf{B}) \notag$

$\mathbf{L} = \sum^{N}_{\alpha} m_{\alpha} [r^2_{\alpha} \boldsymbol{\omega} − \mathbf{r}_{\alpha} (\mathbf{r}_{\alpha} \cdot \boldsymbol{\omega}) ]$

The angular momentum can be expressed in terms of components of $$\boldsymbol{\omega}$$ and $$\mathbf{r}^{\prime}_{\alpha}$$ relative to the body-fixed frame. The following formulae can be written more compactly if $$\mathbf{r}_{\alpha} = (x_{\alpha }, y_{\alpha} , z_{\alpha} )$$, in the rotating body-fixed frame, is written in the form $$\mathbf{r}_{\alpha} = (x_{\alpha ,1}, y_{\alpha ,2} , z_{\alpha ,3} )$$ where the axes are defined by the numbers $$1, 2, 3$$ rather than $$x, y, z$$. In this notation, the angular momentum is written in component form as

$L_{i}=\sum_{\alpha}^{N} m_{\alpha}\left[\omega_{i} \sum_{k} x_{\alpha, k}^{2}-x_{\alpha, i}\left(\sum_{j} x_{\alpha, j} \omega_{j}\right)\right] \label{13.9}$

Assume the Kronecker delta relation

$\omega_i = \sum^3_j \omega_j \delta_{ij} \label{13.10}$

where

\begin{aligned} \delta_{ij} & = & 1 && i=j \\ \delta_{ij} & = & 0 && i \neq j \end{aligned}

Substitute \ref{13.10} in \ref{13.9} gives

\begin{align} L_{i} &=\sum_{\alpha}^{N} m_{\alpha} \sum_{j}\left[\omega_{j} \delta_{i j} \sum_{k} x_{\alpha, k}^{2}-\omega_{j} x_{\alpha, i} x_{\alpha, j}\right] \notag \\ &=\sum_{j}^{3} \omega_{j}\left[\sum_{\alpha}^{N} m_{\alpha}\left(\delta_{i j} \sum_{k} x_{\alpha, k}^{2}-x_{\alpha, i} x_{\alpha, j}\right)\right] \end{align}

This page titled 13.3: Rigid-body Rotation about a Body-Fixed Point is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.