Skip to main content
Physics LibreTexts

13.14: Angular Velocity

  • Page ID
    14186
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Angular velocity \(\omega\)

    It is useful to relate the rigid-body equations of motion in the space-fixed \((\mathbf{\hat{x}}, \mathbf{\hat{y}},\mathbf{\hat{z}})\) coordinate system to those in the body-fixed \((\mathbf{\hat{e}}_1,\mathbf{\hat{e}}_2,\mathbf{\hat{e}}_3)\) coordinate system where the principal axis inertia tensor is defined. It was shown in appendix \(19.4\) that an infinitessimal rotation can be represented by a vector. Thus the time derivatives of these rotation angles can be associated with the components of the angular velocity \(\boldsymbol{\omega}\), where the precession \(\omega_{\phi} = \dot{\phi}\), the nutation \(\omega_{\theta} = \dot{\theta}\), and the spin \(\omega_{\psi} = \dot{\psi}\). Unfortunately the coordinates \((\phi , \theta , \psi)\) are with respect to mixed coordinate frames and thus are not orthogonal axes. That is, the Euler angular velocities are expressed in different coordinate frames, where the precession \(\dot{\phi}\) is around the space-fixed \(\mathbf{\hat{z}}\) axis measured relative to the \(\mathbf{\hat{x}}\)-axis, the spin \(\dot{\psi}\) is around the body-fixed \(\mathbf{\hat{e}}_3\) axis relative to the rotating line-of-nodes, and the nutation \(\dot{\theta}\) is the angular velocity between the \(\mathbf{\hat{z}}\) and \(\mathbf{\hat{e}}_3\) axes and points along the instantaneous line-of-nodes in the \(\mathbf{\hat{e}}_3 \times \mathbf{\hat{z}}\) direction. By reference to Figure \(13.13.1\) it can be seen that the components along the body-fixed axes are as given in Table \(\PageIndex{1}\).

    Table \(\PageIndex{1}\): Euler angular velocity components in the body-fixed frame
    Precession \(\dot{\phi}\) Nutation \(\dot{\theta}\) Spin \(\dot{\psi}\)
    \(\dot{\phi}_1 = \dot{\phi} \sin \theta \sin \psi\) \(\dot{\theta}_1 = \dot{\theta} \cos \psi\) \(\dot{\psi}_1 = 0\)
    \(\dot{\phi}_2 = \dot{\phi} \sin \theta \cos \psi\) \(\dot{\theta}_2 = -\dot{\theta} \sin \psi\) \(\dot{\psi}_2 = 0\)
    \(\dot{\phi}_3 = \dot{\phi} \cos \theta \) \(\dot{\theta}_3 = 0\) \(\dot{\psi}_3 = \psi\)

    Note that the precession angular velocity \(\dot{\phi}\) is the angular velocity that the body-fixed \(\mathbf{\hat{e}}_3\) and \(\mathbf{\hat{z}} \times \mathbf{\hat{3}}\) axes precess around the space-fixed \(\mathbf{\hat{z}}\) axis. Table \(\PageIndex{1}\) gives the Euler angular velocities required to calculate the components of the angular velocity \(\boldsymbol{\omega}\) for the body-fixed \((\mathbf{1}, \mathbf{2}, \mathbf{3})\) axis system. Collecting the individual components of \(\boldsymbol{\omega}\), gives the components of the angular velocity of the body, relative to the space-fixed axes, in the body-fixed axis system \((1, 2, 3)\)

    \[\omega_1 = \dot{\phi}_1 + \dot{\theta}_1 + \dot{\psi}_1 = \dot{\phi} \sin \theta \sin \psi + \dot{\theta} \cos \psi \label{13.86}\]

    \[\omega_2 = \dot{\phi}_2 + \dot{\theta}_2 + \dot{\psi}_2 = \dot{\phi} \sin \theta \cos \psi - \dot{\theta} \sin \psi \label{13.87}\]

    \[\omega_3 = \dot{\phi}_3 + \dot{\theta}_3 + \dot{\psi}_3 = \dot{\phi} \cos \theta + \dot{\psi} \label{13.88}\]

    The angular velocity of the body about the body-fixed \(\mathbf{3}\)-axis, \(\omega_3\), is the sum of the projection of the precession angular velocity of the line-of-nodes \(\dot{\phi}\) with respect to the space-fixed \(\mathbf{x}\)-axis, plus the angular velocity \(\dot{\psi}\) of the body-fixed 3-axis with respect to the rotating line-of-nodes.

    Similarly, the components of the body angular velocity \(\boldsymbol{\omega}\) for the space-fixed axis system \((x,y,z)\) can be derived to be

    \[\omega_x = \dot{\theta} \cos \phi + \dot{\psi} \sin \theta \sin \phi \label{13.89}\]

    \[\omega_y = \dot{\theta} \sin \phi - \dot{\psi} \sin \theta \cos \phi \label{13.90}\]

    \[\omega_z = \dot{\phi} + \dot{\psi} \cos \theta \label{13.91}\]

    Note that when \(\theta = 0\) then the Euler angles are singular in that the space-fixed \(z\) axis is parallel with the body-fixed 3 axis and there is no way of distinguishing between precession \(\dot{\phi}\) and spin \(\dot{\psi}\), leading to \(\omega_z = \omega_3 = \dot{\phi} + \dot{\psi}\). When \(\theta = \pi\) then the \(z\) axis and 3 axis are antiparallel and \(\omega_z = \dot{\phi} - \dot{\psi} = -\omega_3\). The other special case is when \(\cos \theta = 0\) for which the Euler angle system is orthogonal and the space-fixed \(\omega_z = \dot{\phi}\), that is, it equals the precession, while the body-fixed \(\omega_3 = \dot{\psi}\), that is, it equals the spin. When the Euler angle basis is not orthogonal then equations \ref{13.86} - \ref{13.88} and \ref{13.89} - \ref{13.91} are needed for expressing the Euler equations of motion in either the body-fixed frame or the space-fixed frame respectively.

    Equations \ref{13.86} - \ref{13.88} for the components of the angular velocity in the body-fixed frame can be expressed in terms of the Euler angle velocities in a matrix form as

    \[\begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} \sin \theta \sin \psi & \cos \psi & 0 \\ \sin \theta \cos \psi & - \sin \psi & 0 \\ \cos \theta & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} \]

    Note that the transformation matrix is not orthogonal which is to be expected since the Euler angular velocities are about axes that do not form a rectangular system of coordinates. Similarly equations \ref{13.89} - \ref{13.91} for the angular velocity in the space-fixed frame can be expressed in terms of the Euler angle velocities in matrix form as

    \[\begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \begin{pmatrix} 0 & \cos \phi & \sin \theta \sin \phi \\ 0 & \sin \phi & \sin \theta \cos \phi \\ 1 & 0 & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{pmatrix} \]


    This page titled 13.14: Angular Velocity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.