Skip to main content
Physics LibreTexts

14.2: Two Coupled Linear Oscillators

  • Page ID
    9636
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Consider the two-coupled linear oscillator, shown in Figure \(\PageIndex{1}\), which comprises two identical masses each connected to fixed locations by identical springs having a force constant \(\kappa\). A spring with force constant \(\kappa^{\prime}\) couples the two oscillators. The equilibrium lengths of the outer two springs are \(l\) while that of the coupling spring is \(l^{\prime}\). The problem is simplified by restricting the motion to be along the line connecting the masses and assuming fixed endpoints. The small displacements of \(m_1\) and \(m_2\) are taken to be \(x_1\) and \(x_2\) with respect to the equilibrium positions \(l\) and \(l + l^{\prime}\) respectively. The restoring force on \(m_1\) is \(−\kappa x_1−\kappa^{\prime} (x_1 − x_2)\) while the restoring force on \(m_2\) is \(−\kappa x_2 − \kappa^{\prime} (x_2 − x_1)\). This coupled double-oscillator system exhibits basic features of coupled linear oscillator systems.

    12.2.1.PNG
    Figure \(\PageIndex{1}\): Two coupled linear oscillators. The equilibrium spring-lengths are \(l\) for the outer springs and \(l^{\prime}\) for the coupling spring. The displacement from the stable locations are given by \(x_1\) and \(x_2\). The separation between the two masses is \(r\) and the location of the center-of-mass is \(R_{cm}\).

    Assuming \(m_1 = m_2 = m\), then the equations of motion are

    \[\begin{align} m\ddot{x}_1 + (\kappa + \kappa^{\prime} ) x_1 − \kappa^{\prime} x_2 = 0 \label{14.1} \\ \notag m\ddot{x}_2 + (\kappa + \kappa^{\prime} ) x_2 − \kappa^{\prime} x_1 = 0 \notag\end{align} \]

    Assume that the motion for these coupled equations is oscillatory with a solution of the form

    \[\begin{align} x_1 = B_1 e^{i\omega t} \label{14.2}\\ x_2 = B_2e^{i\omega t} \notag\notag\end{align}\]

    where the constants \(B\) may be complex to take into account both the magnitude and phase. Substituting these possible solutions into the equations of motion gives

    \[\begin{align} −m\omega^2 B_1 e^{i\omega t} + (\kappa + \kappa^{\prime} ) B_1e^{i\omega t} − \kappa^{\prime} B_2e^{i\omega t} = 0 \label{14.3}\\ −m\omega^2B_2 e^{i\omega t} + (\kappa + \kappa^{\prime} ) B_2e^{i\omega t} − \kappa^{\prime} B_1 e^{i\omega t} = 0 \notag\end{align}\]

    Collecting terms, and cancelling the common exponential factor, gives

    \[\begin{align} (\kappa + \kappa^{\prime} − m\omega^2) B_1 − \kappa^{\prime} B_2 = 0 \label{14.4} \\ ( \kappa + \kappa^{\prime} − m\omega^2 ) B_2 − \kappa^{\prime} B_1 = 0 \notag\end{align}\]

    The existence of a non-trivial solution of these two simultaneous equations requires that the determinant of the coefficients of \(B_1\) and \(B_2\) must vanish, that is

    \[\begin{vmatrix} \kappa + \kappa^{\prime} − m\omega^2 & −\kappa^{\prime} \\ −\kappa^{\prime} & \kappa + \kappa^{\prime} − m\omega^2 \end{vmatrix} = 0 \label{14.5}\]

    The expansion of this secular determinant yields

    \[( \kappa + \kappa^{\prime} − m\omega^2 )^2 − \kappa^{\prime 2} = 0 \label{14.6}\]

    Solving for \(\omega\) gives

    \[\omega = \sqrt{\frac{\kappa + \kappa^{\prime} \pm \kappa^{\prime}}{m}} \label{14.7}\]

    That is, there are two characteristic frequencies (or eigenfrequencies) for the system

    \[\omega_1 = \sqrt{\frac{\kappa + 2\kappa^{\prime} }{m}} \label{14.8}\]

    \[\omega_2 = \sqrt{\frac{\kappa}{m}} \label{14.9}\]

    Since superposition applies for these linear equations, then the general solution can be written as a sum of the terms that account for the two possible values of \(\omega\).

    12.2.2.PNG

    Figure \(\PageIndex{2}\): Displacement of each of two coupled linear harmonic oscillators with \(\kappa = 4\) and \(\kappa^{\prime} = 1\) in relative units.

    Figure \(\PageIndex{2}\) shows the solutions for a case where \(\kappa = 4\) and \(\kappa^{\prime} = 1\), in arbitrary units, with the initial condition that \(x_2 = D\), and \(x_1 = \dot{x}_1 = \dot{x}_2 = 0\). The two characteristic frequencies are \(\omega_1 = \sqrt{\frac{6}{m}}\) and \(\omega_2 = \sqrt{\frac{4}{m}}\). The characteristic beats phenomenon is exhibited where the envelope over one complete cycle of the low frequency encompasses several higher frequency oscillations. That is, the solution is

    \[x_{2}(t)=\frac{D}{4}\left[e^{i \omega_{1} t}+e^{-i \omega_{1} t}+e^{i \omega_{2} t}+e^{-i \omega_{2} t}\right]=D \cos \left[\left(\frac{\omega_{1}+\omega_{2}}{2}\right) t\right] \cos \left[\left(\frac{\omega_{1}-\omega_{2}}{2}\right) t\right] \]

    while

    \[x_{1}(t)=\frac{D}{4}\left[e^{i \omega_{1} t}+e^{-i \omega_{1} t}-e^{i \omega_{2} t}-e^{-i \omega_{2} t}\right]=D \sin \left[\left(\frac{\omega_{1}+\omega_{2}}{2}\right) t\right] \sin \left[\left(\frac{\omega_{1}-\omega_{2}}{2}\right) t\right]\]

    The energy in the two-coupled oscillators flows back and forth between the coupled oscillators as illustrated in Figure \(\PageIndex{2}\).

    A better understanding of the energy flow occurring between the two coupled oscillators is given by using a \((x_1, x_2)\) configuration-space plot, shown in Figure \(14.3.1\). The flow of energy occurring between the two coupled oscillators can be represented by choosing normal-mode coordinates \(\eta_1\) and \(\eta_2\) that are rotated by \(45^{\circ}\) with respect to the spatial coordinates \((x_1, x_2)\). These normal-mode coordinates \((\eta_1, \eta_2)\) correspond to the two normal modes of the coupled double-oscillator system.


    This page titled 14.2: Two Coupled Linear Oscillators is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.