Skip to main content
Physics LibreTexts

7.1: Comparison of Electrostatics and Magnetostatics

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Students encountering magnetostatics for the first time have usually been exposed to electrostatics already. Electrostatics and magnetostatics exhibit many similarities. These are summarized in Table \(\PageIndex{1}\). The elements of magnetostatics presented in this table are all formally introduced in other sections; the sole purpose of this table is to point out the similarities. The technical term for these similarities is duality. Duality also exists between voltage and current in electrical circuit theory.

    Table \(\PageIndex{1}\): A summary of the duality between electrostatics and magnetostatics
      electrostatics magnetostatics
    Sources static charge steady current, magnetizable material
    Field intensity \({\bf E}\) (V/m) \({\bf H}\) (A/m)
    Flux density \({\bf D}\) (C/m\(^2\)) \({\bf B}\) (Wb/m\(^2\)=T)
    Material relations \({\bf D}=\epsilon{\bf E}\) \({\bf B}=\mu{\bf H}\)
    \({\bf J}=\sigma{\bf E}\)  
    Force on charge \(q\) \({\bf F}=q{\bf E}\) \({\bf F}=q{\bf v} \times {\bf B}\)
    Maxwell’s Eqs.
    \(\oint_{\mathcal S}{\bf D}\cdot d{\bf s} = Q_{encl}\) \(\oint_{\mathcal S}{\bf B}\cdot d{\bf s} = 0\)
    \(\oint_{\mathcal C}{\bf E}\cdot d{\bf l} = 0\) \(\oint_{\mathcal C}{\bf H}\cdot d{\bf l} = I_{encl}\)
    Maxwell’s Eqs.
    \(\nabla\cdot{\bf D}=\rho_v\) \(\nabla\cdot{\bf B}=0\)
    \(\nabla\times{\bf E}=0\) \(\nabla\times{\bf H}={\bf J}\)
    Boundary Conditions \(\hat{\bf n} \times \left[{\bf E}_1-{\bf E}_2\right] = 0\) \(\hat{\bf n} \times \left[{\bf H}_1-{\bf H}_2\right] = {\bf J}_s\)
      \(\hat{\bf n} \cdot \left[{\bf D}_1-{\bf D}_2\right] = \rho_s\) \(\hat{\bf n} \cdot \left[{\bf B}_1-{\bf B}_2\right] = 0\)
    Energy storage Capacitance Inductance
    Energy density \(w_e=\frac{1}{2}\epsilon E^2\) \(w_m=\frac{1}{2}\mu H^2\)
    Energy dissipation Resistance  

    This page titled 7.1: Comparison of Electrostatics and Magnetostatics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) .

    • Was this article helpful?