9.3: Poles
- Page ID
- 34568
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In the previous section, we referred to situations where \(f(z)\) is non-analytic at discrete points. “Discrete”, in this context, means that each point of non-analyticity is surrounded by a finite region over which \(f(z)\) is analytic, isolating it from other points of non-analyticity. Such situations commonly arise from functions of the form \[f(z) \approx \frac{A}{(z-z_0)^n}, \quad \mathrm{where}\;\; n\in\{1,2,3,\dots\}.\] For \(z = z_0\), the function is non-analytic because its value is singular. Such a function is said to have a pole at \(z_0\). The integer \(n\) is called the order of the pole.
Residue of a simple pole
Poles of order 1 are called simple poles, and they are of special interest. Near a simple pole, the function has the form \[f(z) \approx \frac{A}{z-z_0}.\] In this case, the complex numerator \(A\) is called the residue of the pole (so-called because it’s what’s left-over if we take away the singular factor corresponding to the pole.) The residue of a function at a point \(z_0\) is commonly denoted \(\mathrm{Res}[f(z_0)]\). Note that if a function is analytic at \(z_0\), then \(\mathrm{Res}[f(z_0)] = 0\).
Example \(\PageIndex{1}\)
Consider the function \[f(z) = \frac{5}{i-3z}.\] To find the pole and residue, divide the numerator and denominator by \(-3\): \[f(z) = \frac{-5/3}{z-i/3}.\] Thus, there is a simple pole at \(z = i/3\) with residue \(-5/3\).
Example \(\PageIndex{2}\)
Consider the function \[f(z) = \frac{z}{z^2 + 1}.\] To find the poles and residues, we factorize the denominator: \[f(z) = \frac{z}{(z+i)(z-i)}.\] Hence, there are two simple poles, at \(z = \pm i\).
To find the residue at \(z = i\), we separate the divergent part to obtain \[\begin{align} f(z) &= \frac{\left(\frac{z}{z+i}\right)}{z-i} \\ \Rightarrow\quad \mathrm{Res}\big[\,f(z)\,\big]_{z=i} &= \left[\frac{z}{z+i}\right]_{z=i} = 1/2. \end{align}\] Similarly, for the other pole, \[\mathrm{Res}\big[\,f(z)\,\big]_{z=-i} = \left[\frac{z}{z-i}\right]_{z=-i} = 1/2.\]
The residue theorem
In Section 9.1, we used contour parameterization to calculate \[\oint_{\Gamma} \frac{dz}{z} = 2\pi i,\] where \(\Gamma\) is a counter-clockwise circular loop centered on the origin. This holds for any (non-zero) loop radius. By combining this with the results of Section 9.2, we can obtain the residue theorem:
Theorem \(\PageIndex{1}\)
For any analytic function \(f(z)\) with a simple pole at \(z_0\), \[\oint_{\Gamma[z_0]} dz \; f(z) = \pm 2\pi i \, \mathrm{Res}\big[\,f(z)\,\big]_{z = z_0},\] where \(\Gamma[z_0]\) denotes an infinitesimal loop around \(z_0\). The \(+\) sign holds for a counter-clockwise loop, and the \(-\) sign for a clockwise loop.
By combining the residue theorem with the results of the last few sections, we arrive at a technique for integrating a function \(f(z)\) over a loop \(\Gamma\), called the calculus of residues:
- Identify the poles of \(f(z)\) in the domain enclosed by \(\Gamma\).
- Check that these are all simple poles, and that \(f(z)\) has no other non-analytic behaviors (e.g. branch cuts) in the enclosed region.
- Calculate the residue, \(\mathrm{Res}[f(z_n)]\), at each pole \(z_n\).
- The value of the loop integral is \[\oint_\Gamma dz\; f(z) = \pm 2\pi i \sum_n \mathrm{Res}\big[\,f(z)\,\big]_{z = z_n}.\]The plus sign holds if \(\Gamma\) is counter-clockwise, and the minus sign if it is clockwise.
Example of the calculus of residues
Consider \[f(z) = \frac{1}{z^2 + 1}.\] This can be re-written as \[f(z) = \frac{1}{(z + i)\,(z-i)}.\] By inspection, we can identify two poles: one at \(+i\), with residue \(1/2i\), and the other at \(-i\), with residue \(-1/2i\). The function is analytic everywhere else.
Suppose we integrate \(f(z)\) around a counter-clockwise contour \(\Gamma_1\) that encloses only the pole at \(+i\), as indicated by the blue curve in the figure below:

According to the residue theorem, the result is \[\begin{align} \oint_{\Gamma_1}dz \; f(z) &= 2\pi i\, \mathrm{Res}\big[\,f(z)\,\big]_{z = i} \\ &= 2\pi i \cdot \frac{1}{2i} \\& = \pi.\end{align}\] On the other hand, suppose we integrate around a contour \(\Gamma_2\) that encloses both poles, as shown by the purple curve. Then the result is \[\oint_{\Gamma_2}dz \; f(z) = 2\pi i \cdot \left[\frac{1}{2i} - \frac{1}{2i}\right] = 0.\]