Skip to main content
Physics LibreTexts

9.2: Invariant Mass

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    One of the key numbers we can extract from mass and momentum is the invariant mass, a number independent of the Lorentz frame we are in

    \[W^2c^4 = (\sum_i E_i)^2 - (\sum_i {\vec{p}}_i)^2 c^2.\]

    This quantity takes it most transparent form in the center-of-mass, where \(\sum_i {\vec{p}}_i = 0\). In that case

    \[W = E_{\mathrm{CM}}/c^2,\]

    and is thus, apart from the factor \(1/c^2\), nothing but the energy in the CM frame. For a single particle \(W=m_0\), the rest mass.

    Most considerations about processes in high energy physics are greatly simplified by concentrating on the invariant mass. This removes the Lorentz-frame dependence of writing four momenta. I

    As an example we look at the collision of a proton and an antiproton at rest, where we produce two quanta of electromagnetic radiation (\(\gamma\)’s), see Figure \(\PageIndex{1}\), where the anti proton has three-momentum \((p,0,0)\), and the proton is at rest.

    Figure \(\PageIndex{1}\): A sketch of a collision between a proton with velocity \(v\) and an antiproton at rest producing two \(\gamma\) quanta.

    The four-momenta are

    \[\begin{aligned} p_{\mathrm{p}} &=& (p_{\mathrm{lab}},0,0,\sqrt{m_p^2 c^4+ p_{\mathrm{lab}}^2 c^2})\nonumber\\ p_{\bar{\mathrm{p}}} &=& (0,0,0,m_p c^2).\end{aligned}\]

    From this we find the invariant mass

    \[W = \sqrt{2 m_p^2 + 2m_p\sqrt{m_p^2+ p_{\mathrm{lab}}^2 /c^2}}\]

    If the initial momentum is much larger than \(m_p\), more accurately

    \[p_{\mathrm{lab}} \gg m_p c,\]

    we find that

    \[W \approx \sqrt{2 m_p p_{\mathrm{lab}}/c},\]

    which energy needs to be shared between the two photons, in equal parts. We could also have chosen to work in the CM frame, where the calculations get a lot easier.

    This page titled 9.2: Invariant Mass is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Niels Walet via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.