# 8.E: Central Potentials (Exercises)

- Page ID
- 15775

- A particle of mass \(m\) is placed in a finite spherical well: \begin{equation}V(r)=\left\{\begin{array}{ll}

-V_{0} & \text { for } r \leq a \\

0 & \text { for } r>a

\end{array}\right.\end{equation} with \(V_0>0\) and \(a>0\). Find the ground-state by solving the radial equation with \(l=0\). Show that there is no ground-state if \(V_0\,a^{\,2}< \pi^{\,2}\,\hbar^{\,2}/(8\,m)\). - Consider a particle of mass \(m\) in the three-dimensional harmonic oscillator potential \(V(r)=(1/2)\,m\,\omega^{\,2}\,r^{\,2}\). Solve the problem by separation of variables in spherical coordinates, and, hence, determine the energy eigenvalues of the system.
- The normalized wavefunction for the ground-state of a hydrogen-like atom (neutral hydrogen, \({\rm He}^+\), \({\rm Li}^{++}\), et cetera.) with nuclear charge \(Z\,e\) has the form \[\psi = A\,\exp(-\beta\,r),\] where \(A\) and \(\beta\) are constants, and \(r\) is the distance between the nucleus and the electron. Show the following:
- \(A^2=\beta^{\,3}/\pi\).
- \(\beta = Z/a_0\), where \(a_0=(\hbar^{\,2}/m_e)\,(4\pi\,\epsilon_0/e^{\,2})\).
- The energy is \(E=-Z^{\,2}\,E_0\) where \(E_0 = (m_e/2\,\hbar^{\,2})\,(e^{\,2}/4\pi\,\epsilon_0)^2\).
- The expectation values of the potential and kinetic energies are \(2\,E\) and \(-E\), respectively.
- The expectation value of \(r\) is \((3/2)\,(a_0/Z)\).
- The most probable value of \(r\) is \(a_0/Z\).

- An atom of tritium is in its ground-state. Suddenly the nucleus decays into a helium nucleus, via the emission of a fast electron that leaves the atom without perturbing the extranuclear electron, Find the probability that the resulting \({\rm He}^+\) ion will be left in an \(n=1\), \(l=0\) state. Find the probability that it will be left in a \(n=2\), \(l=0\) state. What is the probability that the ion will be left in an \(l>0\) state?
- Calculate the wavelengths of the photons emitted from the \(n=2\), \(l=1\) to \(n=1\), \(l=0\) transition in hydrogen, deuterium, and positronium.
- To conserve linear momentum, an atom emitting a photon must recoil, which means that not all of the energy made available in the downward jump goes to the photon. Find a hydrogen atom’s recoil energy when it emits a photon in an \(n=2\) to \(n=1\) transition. What fraction of the transition energy is the recoil energy?

## Contributors and Attributions

Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

\( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)