Skip to main content
Physics LibreTexts

14.1: Fundamentals of Scattering Theory

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Consider time-independent, energy conserving scattering in which the Hamiltonian of the system is written \[H = H_0 + V({\bf r}),\] where \[H_0 = \frac{p^{\,2}}{2\,m} \equiv - \frac{\hbar^{\,2}}{2\,m}\,\nabla^{\,2}\] is the Hamiltonian of a free particle of mass \(m\), and \(V({\bf r})\) the scattering potential. This potential is assumed to only be non-zero in a fairly localized region close to the origin. Let \[\psi_0({\bf r}) = \sqrt{n}\,{\rm e}^{\,{\rm i}\,{\bf k}\cdot {\bf r}}\] represent an incident beam of particles, of number density \(n\), and velocity \({\bf v} = \hbar\,{\bf k}/m\). [See Equation ([e14.14gg]).] Of course, \[H_0\,\psi_0= E\,\psi_0,\] where \(E = \hbar^{\,2}\,k^{\,2}/(2\,m)\) is the particle energy. Schrödinger’s equation for the scattering problem is \[(H_0+V)\,\psi = E\,\psi,\] subject to the boundary condition \(\psi\rightarrow\psi_0\) as \(V\rightarrow 0\).

    The previous equation can be rearranged to give \[\label{e15.6} (\nabla^{\,2}+k^{\,2})\,\psi = \frac{2\,m}{\hbar^{\,2}}\,V\,\psi.\] Now, \[(\nabla^{\,2}+k^{\,2})\,u({\bf r}) = \rho({\bf r})\] is known as the Helmholtz equation. The solution to this equation is well known \[u({\bf r}) = u_0({\bf r}) - \int \frac{{\rm e}^{\,{\rm i}\,k\,|{\bf r}-{\bf r}'|}} {4\pi\,|{\bf r}-{\bf r}'|}\,\rho({\bf r}')\,d^{\,3}{\bf r}'.\] Here, \(u_0({\bf r})\) is any solution of \((\nabla^{\,2}+k^{\,2})\,u_0 = 0\). Hence, Equation ([e15.6]) can be inverted, subject to the boundary condition \(\psi\rightarrow\psi_0\) as \(V\rightarrow 0\), to give

    \begin{equation}\psi(\mathbf{r})=\psi_{0}(\mathbf{r})-\frac{2 m}{\hbar^{2}} \int \frac{\mathbf{e}^{i k\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} V\left(\mathbf{r}^{\prime}\right) \psi\left(\mathbf{r}^{\prime}\right) d^{3} \mathbf{r}^{\prime}\end{equation}

    Let us calculate the value of the wavefunction \(\psi({\bf r})\) well outside the scattering region. Now, if \(r\gg r'\) then \[|{\bf r}-{\bf r}'| \simeq r - \hat{\bf r}\cdot {\bf r}'\] to first-order in \(r'/r\), where \(\hat{\bf r}/r\) is a unit vector that points from the scattering region to the observation point. It is helpful to define \({\bf k}'=k\,\hat{\bf r}\). This is the wavevector for particles with the same energy as the incoming particles (i.e., \(k'=k\)) that propagate from the scattering region to the observation point. Equation ([e15.9]) reduces to

    \[\label{e15.11} \psi({\bf r}) \simeq \sqrt{n}\left[{\rm e}^{\,{\rm i}\,{\bf k}\cdot{\bf r}} + \frac{e^{\,{\rm i}\,k\,r}}{r}\,f({\bf k}, {\bf k}')\right],\] where

    \[\label{e5.12} f({\bf k},{\bf k}') = -\frac{m}{2\pi \sqrt{n}\,\hbar^{\,2}}\int {\rm e}^{-{\rm i}\,{\bf k}'\cdot{\bf r}'}\,V({\bf r}')\,\psi({\bf r}')\,d^{\,3}{\bf r}'.\] The first term on the right-hand side of Equation ([e15.11]) represents the incident particle beam, whereas the second term represents an outgoing spherical wave of scattered particles.

    The differential scattering cross-section, \(d\sigma/d{\mit\Omega}\), is defined as the number of particles per unit time scattered into an element of solid angle \(d{\mit\Omega}\), divided by the incident particle flux. From Section [s7.2], the probability flux (i.e., the particle flux) associated with a wavefunction \(\psi\) is \[{\bf j} = \frac{\hbar}{m}\,{\rm Im}(\psi^\ast\,\nabla\psi).\] Thus, the particle flux associated with the incident wavefunction \(\psi_0\) is

    \[\label{e14.14gg} {\bf j} = n\,{\bf v},\] where \({\bf v}=\hbar\,{\bf k}/m\) is the velocity of the incident particles. Likewise, the particle flux associated with the scattered wavefunction \(\psi-\psi_0\) is \[{\bf j}' = n\,\frac{|f({\bf k},{\bf k}')|^{\,2}}{r^{\,2}}\,{\bf v}',\] where \({\bf v}' = \hbar\,{\bf k}'/m\) is the velocity of the scattered particles. Now, \[\frac{d\sigma}{d{\mit\Omega}}\,d{\mit\Omega} = \frac{r^{\,2}\,d{\mit\Omega}\,|{\bf j}'|}{|{\bf j}|},\] which yields

    \[\label{e15.17} \frac{d\sigma}{d{\mit\Omega}} = |f({\bf k},{\bf k}')|^{\,2}.\] Thus, \(|f({\bf k},{\bf k}')|^{\,2}\) gives the differential cross-section for particles with incident velocity \({\bf v}=\hbar\,{\bf k}/m\) to be scattered such that their final velocities are directed into a range of solid angles \(d{\mit\Omega}\) about \({\bf v}'=\hbar\,{\bf k}'/m\). Note that the scattering conserves energy, so that \(|{\bf v}'|=|{\bf v}|\) and \(|{\bf k}'|=|{\bf k}|\).

    Contributors and Attributions

    • Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin)

      \( \newcommand {\ltapp} {\stackrel {_{\normalsize<}}{_{\normalsize \sim}}}\) \(\newcommand {\gtapp} {\stackrel {_{\normalsize>}}{_{\normalsize \sim}}}\) \(\newcommand {\btau}{\mbox{\boldmath$\tau$}}\) \(\newcommand {\bmu}{\mbox{\boldmath$\mu$}}\) \(\newcommand {\bsigma}{\mbox{\boldmath$\sigma$}}\) \(\newcommand {\bOmega}{\mbox{\boldmath$\Omega$}}\) \(\newcommand {\bomega}{\mbox{\boldmath$\omega$}}\) \(\newcommand {\bepsilon}{\mbox{\boldmath$\epsilon$}}\)

    This page titled 14.1: Fundamentals of Scattering Theory is shared under a not declared license and was authored, remixed, and/or curated by Richard Fitzpatrick.

    • Was this article helpful?