3.9: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Exercises
Exercise \PageIndex{1}
Let \mathscr{H}_A and \mathscr{H}_B denote single-particle Hilbert spaces with well-defined inner products. That is to say, for all vectors |\mu\rangle, |\mu'\rangle, |\mu''\rangle \in \mathscr{H}_A, that Hilbert space’s inner product satisfies the inner product axioms
- \langle \mu|\mu' \rangle = \langle\mu'|\mu\rangle^*
- \langle \mu|\mu \rangle \in \mathbb{R}^+_0, and \langle \mu|\mu \rangle = 0 if and only if |\mu\rangle = 0.
- \langle\mu| \, \big(|\mu'\rangle + |\mu'' \rangle\big) = \langle \mu|\mu'\rangle + \langle \mu|\mu''\rangle
- \langle \mu | \,\big(c|\mu'\rangle\big) = c\langle\mu|\mu'\rangle for all c\in\mathbb{C},
and likewise for vectors from \mathscr{H}_B with that Hilbert space’s inner product.
In Section 3.1, we defined a tensor product space \mathscr{H}_A\otimes\mathscr{H}_B as the space spanned by the basis vectors \{|\mu\rangle\otimes|\nu\rangle\}, where the |\mu\rangle’s are basis vectors for \mathscr{H}_A and the |\nu\rangle’s are basis vectors for \mathscr{H}_B. Prove that we can define an inner product using
\Big(\langle\mu| \otimes \langle\nu| \Big) \Big(|\mu'\rangle \otimes |\nu'\rangle\Big) \;\equiv\; \langle\mu|\mu'\rangle \, \langle\nu|\nu'\rangle = \delta_{\mu\mu'}\delta_{\nu\nu'}
which satisfies the inner product axioms.
Exercise \PageIndex{2}
Consider the density operator
\hat{\rho} = \frac{1}{2} |\!+\!z\rangle \langle+z| \,+\, \frac{1}{2} |\!+\!x\rangle \langle+x|
where |\!+\!x\rangle = \frac{1}{\sqrt{2}} \left(|\!+\!z\rangle + |\!-\!z\rangle\right). This can be viewed as an equal-probability sum of two different pure states. However, the density matrix can also be written as
\hat{\rho} \,=\, p_1\, |\psi_1\rangle \langle \psi_1| \,+\, p_2\, |\psi_2\rangle \langle\psi_2|
where |\psi_{1}\rangle and |\psi_{2}\rangle are the eigenvectors of \hat{\rho}. Show that p_1 and p_2 are not 1/2.
Exercise \PageIndex{3}
Consider two distinguishable particles, A and B. The 2D Hilbert space of A is spanned by \{|m\rangle, |n\rangle\}, and the 3D Hilbert space of B is spanned by \{|p\rangle, |q\rangle, |r\rangle\}. The two-particle state is
|\psi\rangle = \frac{1}{3} \, |m\rangle|p\rangle + \frac{1}{\sqrt{6}} \, |m\rangle|q\rangle + \frac{1}{\sqrt{18}} \, |m\rangle|r\rangle + \frac{\sqrt{2}}{3} \, |n\rangle|p\rangle + \frac{1}{\sqrt{3}} \, |n\rangle|q\rangle + \frac{1}{3} \, |n\rangle|r\rangle.
Find the entanglement entropy.
Further Reading
[1] Bransden & Joachain, §14.1—14.4, §17.1–17.5
[2] Sakurai, §3.9
[3] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Physical Review 47, 777 (1935).
[4] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195 (1964).
[5] N. D. Mermin, Bringing home the atomic world: Quantum mysteries for anybody, American Journal of Physics 49, 940 (1981).
[6] A. Aspect, Bell’s inequality test: more ideal than ever, Nature (News and Views) 398, 189 (1999).
[7] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem, Physical Review Letters 67, 661 (1991).
[8] H. Everett, III, The Theory of the Universal Wave Function (PhD thesis), Princeton University (1956)
[9] A. Albrecht, Following a “collapsing” wave function, Physical Review D 48, 3768 (1993).
[10] A. Edelman and N. R. Rao, Random matrix theory, Acta Numerica 14, 233 (2005).