Skip to main content
Physics LibreTexts

3.9: Exercises

  • Page ID
    34639
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercises

    Exercise \(\PageIndex{1}\)

    Let \(\mathscr{H}_A\) and \(\mathscr{H}_B\) denote single-particle Hilbert spaces with well-defined inner products. That is to say, for all vectors \(|\mu\rangle, |\mu'\rangle, |\mu''\rangle \in \mathscr{H}_A\), that Hilbert space’s inner product satisfies the inner product axioms

    1. \(\langle \mu|\mu' \rangle = \langle\mu'|\mu\rangle^*\)

    2. \(\langle \mu|\mu \rangle \in \mathbb{R}^+_0\), and \(\langle \mu|\mu \rangle = 0\) if and only if \(|\mu\rangle = 0\).

    3. \(\langle\mu| \, \big(|\mu'\rangle + |\mu'' \rangle\big) = \langle \mu|\mu'\rangle + \langle \mu|\mu''\rangle\)

    4. \(\langle \mu | \,\big(c|\mu'\rangle\big) = c\langle\mu|\mu'\rangle\) for all \(c\in\mathbb{C}\),

    and likewise for vectors from \(\mathscr{H}_B\) with that Hilbert space’s inner product.

    In Section 3.1, we defined a tensor product space \(\mathscr{H}_A\otimes\mathscr{H}_B\) as the space spanned by the basis vectors \(\{|\mu\rangle\otimes|\nu\rangle\}\), where the \(|\mu\rangle\)’s are basis vectors for \(\mathscr{H}_A\) and the \(|\nu\rangle\)’s are basis vectors for \(\mathscr{H}_B\). Prove that we can define an inner product using

    \[\Big(\langle\mu| \otimes \langle\nu| \Big) \Big(|\mu'\rangle \otimes |\nu'\rangle\Big) \;\equiv\; \langle\mu|\mu'\rangle \, \langle\nu|\nu'\rangle = \delta_{\mu\mu'}\delta_{\nu\nu'}\]

    which satisfies the inner product axioms.

    Exercise \(\PageIndex{2}\)

    Consider the density operator

    \[\hat{\rho} = \frac{1}{2} |\!+\!z\rangle \langle+z| \,+\, \frac{1}{2} |\!+\!x\rangle \langle+x|\]

    where \(|\!+\!x\rangle = \frac{1}{\sqrt{2}} \left(|\!+\!z\rangle + |\!-\!z\rangle\right)\). This can be viewed as an equal-probability sum of two different pure states. However, the density matrix can also be written as

    \[\hat{\rho} \,=\, p_1\, |\psi_1\rangle \langle \psi_1| \,+\, p_2\, |\psi_2\rangle \langle\psi_2|\]

    where \(|\psi_{1}\rangle\) and \(|\psi_{2}\rangle\) are the eigenvectors of \(\hat{\rho}\). Show that \(p_1\) and \(p_2\) are not 1/2.

    Exercise \(\PageIndex{3}\)

    Consider two distinguishable particles, \(A\) and \(B\). The 2D Hilbert space of \(A\) is spanned by \(\{|m\rangle, |n\rangle\}\), and the 3D Hilbert space of \(B\) is spanned by \(\{|p\rangle, |q\rangle, |r\rangle\}\). The two-particle state is

    \[|\psi\rangle = \frac{1}{3} \, |m\rangle|p\rangle + \frac{1}{\sqrt{6}} \, |m\rangle|q\rangle + \frac{1}{\sqrt{18}} \, |m\rangle|r\rangle + \frac{\sqrt{2}}{3} \, |n\rangle|p\rangle + \frac{1}{\sqrt{3}} \, |n\rangle|q\rangle + \frac{1}{3} \, |n\rangle|r\rangle.\]

    Find the entanglement entropy.

    Further Reading

    [1] Bransden & Joachain, §14.1—14.4, §17.1–17.5

    [2] Sakurai, §3.9

    [3] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Physical Review 47, 777 (1935).

    [4] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195 (1964).

    [5] N. D. Mermin, Bringing home the atomic world: Quantum mysteries for anybody, American Journal of Physics 49, 940 (1981).

    [6] A. Aspect, Bell’s inequality test: more ideal than ever, Nature (News and Views) 398, 189 (1999).

    [7] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem, Physical Review Letters 67, 661 (1991).

    [8] H. Everett, III, The Theory of the Universal Wave Function (PhD thesis), Princeton University (1956)

    [9] A. Albrecht, Following a “collapsing” wave function, Physical Review D 48, 3768 (1993).

    [10] A. Edelman and N. R. Rao, Random matrix theory, Acta Numerica 14, 233 (2005).


    This page titled 3.9: Exercises is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Y. D. Chong via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?