3.9: Exercises
- Page ID
- 34639
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercises
Exercise \(\PageIndex{1}\)
Let \(\mathscr{H}_A\) and \(\mathscr{H}_B\) denote single-particle Hilbert spaces with well-defined inner products. That is to say, for all vectors \(|\mu\rangle, |\mu'\rangle, |\mu''\rangle \in \mathscr{H}_A\), that Hilbert space’s inner product satisfies the inner product axioms
- \(\langle \mu|\mu' \rangle = \langle\mu'|\mu\rangle^*\)
- \(\langle \mu|\mu \rangle \in \mathbb{R}^+_0\), and \(\langle \mu|\mu \rangle = 0\) if and only if \(|\mu\rangle = 0\).
- \(\langle\mu| \, \big(|\mu'\rangle + |\mu'' \rangle\big) = \langle \mu|\mu'\rangle + \langle \mu|\mu''\rangle\)
- \(\langle \mu | \,\big(c|\mu'\rangle\big) = c\langle\mu|\mu'\rangle\) for all \(c\in\mathbb{C}\),
and likewise for vectors from \(\mathscr{H}_B\) with that Hilbert space’s inner product.
In Section 3.1, we defined a tensor product space \(\mathscr{H}_A\otimes\mathscr{H}_B\) as the space spanned by the basis vectors \(\{|\mu\rangle\otimes|\nu\rangle\}\), where the \(|\mu\rangle\)’s are basis vectors for \(\mathscr{H}_A\) and the \(|\nu\rangle\)’s are basis vectors for \(\mathscr{H}_B\). Prove that we can define an inner product using
\[\Big(\langle\mu| \otimes \langle\nu| \Big) \Big(|\mu'\rangle \otimes |\nu'\rangle\Big) \;\equiv\; \langle\mu|\mu'\rangle \, \langle\nu|\nu'\rangle = \delta_{\mu\mu'}\delta_{\nu\nu'}\]
which satisfies the inner product axioms.
Exercise \(\PageIndex{2}\)
Consider the density operator
\[\hat{\rho} = \frac{1}{2} |\!+\!z\rangle \langle+z| \,+\, \frac{1}{2} |\!+\!x\rangle \langle+x|\]
where \(|\!+\!x\rangle = \frac{1}{\sqrt{2}} \left(|\!+\!z\rangle + |\!-\!z\rangle\right)\). This can be viewed as an equal-probability sum of two different pure states. However, the density matrix can also be written as
\[\hat{\rho} \,=\, p_1\, |\psi_1\rangle \langle \psi_1| \,+\, p_2\, |\psi_2\rangle \langle\psi_2|\]
where \(|\psi_{1}\rangle\) and \(|\psi_{2}\rangle\) are the eigenvectors of \(\hat{\rho}\). Show that \(p_1\) and \(p_2\) are not 1/2.
Exercise \(\PageIndex{3}\)
Consider two distinguishable particles, \(A\) and \(B\). The 2D Hilbert space of \(A\) is spanned by \(\{|m\rangle, |n\rangle\}\), and the 3D Hilbert space of \(B\) is spanned by \(\{|p\rangle, |q\rangle, |r\rangle\}\). The two-particle state is
\[|\psi\rangle = \frac{1}{3} \, |m\rangle|p\rangle + \frac{1}{\sqrt{6}} \, |m\rangle|q\rangle + \frac{1}{\sqrt{18}} \, |m\rangle|r\rangle + \frac{\sqrt{2}}{3} \, |n\rangle|p\rangle + \frac{1}{\sqrt{3}} \, |n\rangle|q\rangle + \frac{1}{3} \, |n\rangle|r\rangle.\]
Find the entanglement entropy.
Further Reading
[1] Bransden & Joachain, §14.1—14.4, §17.1–17.5
[2] Sakurai, §3.9
[3] A. Einstein, B. Podolsky, and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Physical Review 47, 777 (1935).
[4] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics 1, 195 (1964).
[5] N. D. Mermin, Bringing home the atomic world: Quantum mysteries for anybody, American Journal of Physics 49, 940 (1981).
[6] A. Aspect, Bell’s inequality test: more ideal than ever, Nature (News and Views) 398, 189 (1999).
[7] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem, Physical Review Letters 67, 661 (1991).
[8] H. Everett, III, The Theory of the Universal Wave Function (PhD thesis), Princeton University (1956)
[9] A. Albrecht, Following a “collapsing” wave function, Physical Review D 48, 3768 (1993).
[10] A. Edelman and N. R. Rao, Random matrix theory, Acta Numerica 14, 233 (2005).