# 2.6: Example

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Consider a simple harmonic oscillator in its ground state, to which we apply a perturbation $$\hat{V} = \lambda x^2$$. We know the unperturbed wavefunction $$|n_0 \rangle = [m \omega_0/ \pi \hbar]^{\frac{1}{4}} \text{ exp}\{−m\omega_0x^2/2\hbar\}$$, so we can evaluate the first order shift in energy according to the perturbation theory:

$\Delta E_0 = \langle n_0| \lambda x^2 |n_0 \rangle = \lambda \sqrt{m\omega_0/\pi \hbar} \int x^2 \text{ exp}\{−m\omega_0x^2 /\hbar \}dx = \frac{\lambda}{2}\frac{\hbar}{m\omega_0} \nonumber$

In this case we know the exact shift, since the perturbation is simply an additional harmonic potential, giving a total $$k = m\omega^2_0 + 2\lambda$$ and an exact ground state energy of $$\frac{1}{2} \hbar \sqrt{\omega^2_0 + 2 \lambda / m}$$. It is easy to verify that to first order in $$\lambda$$ these expressions are identical.

To determine the amount of mixing of states, we need to evaluate matrix elements like $$\langle n_0|\lambda x^2 |n_i \rangle$$. We won’t evaluate these here, but we will note that for odd $$i$$ the integral is zero - the symmetric perturbation only mixes in symmetric excited states.

This page titled 2.6: Example is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.