Skip to main content
Physics LibreTexts

2.6: Example

  • Page ID
    28744
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Consider a simple harmonic oscillator in its ground state, to which we apply a perturbation \(\hat{V} = \lambda x^2\). We know the unperturbed wavefunction \(|n_0 \rangle = [m \omega_0/ \pi \hbar]^{\frac{1}{4}} \text{ exp}\{−m\omega_0x^2/2\hbar\}\), so we can evaluate the first order shift in energy according to the perturbation theory:

    \[\Delta E_0 = \langle n_0| \lambda x^2 |n_0 \rangle = \lambda \sqrt{m\omega_0/\pi \hbar} \int x^2 \text{ exp}\{−m\omega_0x^2 /\hbar \}dx = \frac{\lambda}{2}\frac{\hbar}{m\omega_0} \nonumber\]

    In this case we know the exact shift, since the perturbation is simply an additional harmonic potential, giving a total \(k = m\omega^2_0 + 2\lambda\) and an exact ground state energy of \(\frac{1}{2} \hbar \sqrt{\omega^2_0 + 2 \lambda / m} \). It is easy to verify that to first order in \(\lambda\) these expressions are identical.

    To determine the amount of mixing of states, we need to evaluate matrix elements like \(\langle n_0|\lambda x^2 |n_i \rangle\). We won’t evaluate these here, but we will note that for odd \(i\) the integral is zero - the symmetric perturbation only mixes in symmetric excited states.


    This page titled 2.6: Example is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?