Skip to main content
Physics LibreTexts

3.1: Time-Independent Degenerate Perturbation Theory

  • Page ID
    28753
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We have seen how we can find approximate solutions for a system whose Hamiltonian is of the form

    \[\hat{H} = \hat{H}_0 + \hat{V} \nonumber\]

    When we assumed that \(\hat{H}\) and \(\hat{H}_0\) possess discrete, non-degenerate eigenvalues only. This led to a mixing of states where

    \[|\phi_0 \rangle = |n_0 \rangle + \sum_{k \neq 0} \frac{V_{k0}}{(E_0 − E_k)} |n_k \rangle \nonumber\]

    Clearly, if \(E_0 = E_k\) this diverges. As do the higher order energy shifts (see 2.4). Thus for the degenerate case we cannot associate a particular perturbed state \(|\phi_0 \rangle\) with a particular unperturbed state \(|n_0 \rangle\): we need to take a different approach. In fact, the approximation we make is completely different: we assume that the small perturbation only mixes those states which are degenerate. We then solve the problem exactly for that subset of states.

    Assume that \(\hat{H}_0\) possesses \(N\) degenerate eigenstates \(|m \rangle\) with eigenvalue \(E_{deg}\). It may also possesses non-degenerate eigenstates, which can be treated separately by non-degenerate perturbation theory. We write a perturbed eigenstate \(|\phi_j \rangle\) as an linear expansion in the unperturbed degenerate eigenstates only:

    \[|\phi_j \rangle = \sum_i |m_i \rangle \langle m_i | \phi_j \rangle = \sum_i c_{ji} | m_i \rangle \nonumber\]

    Where \(i\) here runs over degenerate states only. The TISE now becomes:

    \[[\hat{H}_0 + \hat{V} ] |\phi_j \rangle = [\hat{H}_0 + \hat{V} ] \sum_i c_{ji} |m_i \rangle = E_j \sum_i c_{ji} |m_i \rangle \nonumber\]

    but we know that for all degenerate eigenstates \(\hat{H}_0|m_i \rangle = E_{deg} |m_i \rangle\). So we obtain:

    \[\sum_i c_{ji} \hat{V} | m_i \rangle = (E_j - E_{deg}) \sum_i c_{ji} | m_i \rangle \nonumber\]

    premultiplying by some unperturbed state \(\langle m_k|\) gives

    \[\sum_i c_{ji} \left[ \langle m_k | \hat{V} | m_i \rangle - \delta_{ik} (E_j - E_{deg}) \right] = 0 \nonumber\]

    We can get a similar equation from each unperturbed state \(|m_k \rangle\). We thus have an eigenvalue problem: the eigenvector has elements \(c_{ji}\) and the eigenvalues are \(\Delta E_j = E_j − E_{deg}\). Writing the matrix elements between the \(i^{th}\) and \(k^{th}\) unperturbed degenerate states as \(V_{ik} \equiv \langle m_i |\hat{V} |m_k \rangle\) we recover the determinantal equation:

    \[\begin{vmatrix} V_{11} − \Delta E_j & V_{12} & ... & V_{1N} \\ V_{21} & V_{22} − \Delta E_j & ... & V_{2N} \\ ... & ... & ... & ... \\ V_{N1} & V_{N2} & ... & V_{NN} − \Delta E_j \end{vmatrix} = 0 \nonumber\]

    The \(N\) eigenvalues obtained by solving this equation give the shifts in energy due to the perturbation, and the eigenvectors give the perturbed states \(|\phi \rangle\) in the unperturbed, degenerate basis set \(|m \rangle\).


    This page titled 3.1: Time-Independent Degenerate Perturbation Theory is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?