# 3.1: Time-Independent Degenerate Perturbation Theory

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

We have seen how we can find approximate solutions for a system whose Hamiltonian is of the form

$\hat{H} = \hat{H}_0 + \hat{V} \nonumber$

When we assumed that $$\hat{H}$$ and $$\hat{H}_0$$ possess discrete, non-degenerate eigenvalues only. This led to a mixing of states where

$|\phi_0 \rangle = |n_0 \rangle + \sum_{k \neq 0} \frac{V_{k0}}{(E_0 − E_k)} |n_k \rangle \nonumber$

Clearly, if $$E_0 = E_k$$ this diverges. As do the higher order energy shifts (see 2.4). Thus for the degenerate case we cannot associate a particular perturbed state $$|\phi_0 \rangle$$ with a particular unperturbed state $$|n_0 \rangle$$: we need to take a different approach. In fact, the approximation we make is completely different: we assume that the small perturbation only mixes those states which are degenerate. We then solve the problem exactly for that subset of states.

Assume that $$\hat{H}_0$$ possesses $$N$$ degenerate eigenstates $$|m \rangle$$ with eigenvalue $$E_{deg}$$. It may also possesses non-degenerate eigenstates, which can be treated separately by non-degenerate perturbation theory. We write a perturbed eigenstate $$|\phi_j \rangle$$ as an linear expansion in the unperturbed degenerate eigenstates only:

$|\phi_j \rangle = \sum_i |m_i \rangle \langle m_i | \phi_j \rangle = \sum_i c_{ji} | m_i \rangle \nonumber$

Where $$i$$ here runs over degenerate states only. The TISE now becomes:

$[\hat{H}_0 + \hat{V} ] |\phi_j \rangle = [\hat{H}_0 + \hat{V} ] \sum_i c_{ji} |m_i \rangle = E_j \sum_i c_{ji} |m_i \rangle \nonumber$

but we know that for all degenerate eigenstates $$\hat{H}_0|m_i \rangle = E_{deg} |m_i \rangle$$. So we obtain:

$\sum_i c_{ji} \hat{V} | m_i \rangle = (E_j - E_{deg}) \sum_i c_{ji} | m_i \rangle \nonumber$

premultiplying by some unperturbed state $$\langle m_k|$$ gives

$\sum_i c_{ji} \left[ \langle m_k | \hat{V} | m_i \rangle - \delta_{ik} (E_j - E_{deg}) \right] = 0 \nonumber$

We can get a similar equation from each unperturbed state $$|m_k \rangle$$. We thus have an eigenvalue problem: the eigenvector has elements $$c_{ji}$$ and the eigenvalues are $$\Delta E_j = E_j − E_{deg}$$. Writing the matrix elements between the $$i^{th}$$ and $$k^{th}$$ unperturbed degenerate states as $$V_{ik} \equiv \langle m_i |\hat{V} |m_k \rangle$$ we recover the determinantal equation:

$\begin{vmatrix} V_{11} − \Delta E_j & V_{12} & ... & V_{1N} \\ V_{21} & V_{22} − \Delta E_j & ... & V_{2N} \\ ... & ... & ... & ... \\ V_{N1} & V_{N2} & ... & V_{NN} − \Delta E_j \end{vmatrix} = 0 \nonumber$

The $$N$$ eigenvalues obtained by solving this equation give the shifts in energy due to the perturbation, and the eigenvectors give the perturbed states $$|\phi \rangle$$ in the unperturbed, degenerate basis set $$|m \rangle$$.

This page titled 3.1: Time-Independent Degenerate Perturbation Theory is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform.