Skip to main content
Physics LibreTexts

6.1: Time Dependence

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The exact expression for the time dependence of a system with \(N\) states required a set of \(N\) simultaneous differential equations. One case where we can solve this problem exactly is when we have a small number of states. Consider a system which requires only two basis states. Say we prepare it in initial state \(|1 \rangle\) and we want to know how long it will take to go to the other state \(|2 \rangle\). From section 5, we have two coupled equations in the time dependent \(c_1\) and \(c_2\):

    \[i\hbar \dot{c}_1 = V_{11}c_1 + V_{12}c_2e^{i\omega_{12}t} \\ i\hbar \dot{c}_2 = V_{22}c_2 + V_{21}c_1e^{i\omega_{21}t} \nonumber\]

    where \(c_1(0) = 1\) and \(c_2(0) = 0\).

    If the change is slow, we can use first order time-dependent perturbation theory. We thus replace the \(c_n(t)\) by \(c_n(0)\), and integrate whence:

    \[c_1 \approx \text{ exp}(iV_{11}t/\hbar ) \\ |c_1|^2 \approx 1 \\ c_2 \approx \frac{−i}{\hbar} \int^t_0 V_{21}e^{i\omega_{21}t} dt \nonumber\]

    Including the constant of integration for \(c_1(0) = 1\).

    This page titled 6.1: Time Dependence is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?