Skip to main content
Physics LibreTexts

11.3: Scattering in one dimension- Step function

  • Page ID
    28678
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Firstly, we review the problem of scattering by a step function in one dimension. Consider a particle moving from a region \((x < 0)\) where the potential is \(V = 0\) to a region \((x > 0)\) where the potential is \(V = V_0\).

    Assuming the particle energy \(E > V_0\), this is simply the free particle problem, the spatial solution to which is:

    \[\Phi = A \text{ exp}(ikx) + B \text{ exp}(−ikx) \quad (x < 0); \quad \Phi = C \text{ exp}(ik'x) + D \text{ exp}(−ik'x) \quad (x > 0) \nonumber\]

    where \(k = \sqrt{2mE/}\hbar\) and \(k' = \sqrt{2m(E − V_0)}/\hbar\)

    11.1.PNG

    Figure \(\PageIndex{1}\): Scattering at a step function.

    From the boundary condition that all particles start from \(x = −\infty\), we can immediately set \(D=0\).

    From the condition of continuity of \(\Phi\) and \(d\Phi /dx\) at \(x = 0\) we also require \(A + B = C\) and \(k(A − B) = k' C\)

    This gives the reflected amplitude \(B/A = (k − k')/(k + k')\) and the transmitted amplitude \(C/A = 2k/(k + k' )\)

    The reflected flux is thus

    \[\frac{\hbar k}{m} A^2 \left( \frac{k − k'}{k + k'}\right)^2 \nonumber\]

    and the transmitted flux is

    \[\frac{\hbar k'}{m} A^2 \left(\frac{2k}{k + k'}\right)^2 \nonumber\]

    Note that \(A^2 \neq B^2 + C^2\). The conserved quantity is the flux of particles, not the probability density. In this case the transmitted particles are moving more slowly than the incident ones.

    Notice that if \(V_0\) is negative, the transmitted flux gets smaller as \(|V_0|\) gets larger: it is difficult to fall off a big cliff! This anomaly is due to the unphysical potential - the discontinuous first derivative at \(x = 0\).

    We have not considered the case of \(E < V_0\). Now the square root is imaginary and \(\Phi (x > 0) = Ce^{-\kappa' x}\) where we define a real quantity \(\kappa' = ik' = \sqrt{2m(V_0 − E)}/\hbar\). The boundary conditions are then \(A+B = C\) and \(ik(A−B) = \kappa' C\), which gives the reflected amplitude \(B/A = (ik−\kappa' )/(ik+\kappa')\) and the transmitted amplitude \(C\kappa' /Ak = 2ik/(ik + \kappa' )\).

    Now the reflected flux is equal to the incident flux, and although the wavefunction penetrates the region \(x > 0\), it decays exponentially and there is no propagating wave.


    This page titled 11.3: Scattering in one dimension- Step function is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Graeme Ackland via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.