Skip to main content
\(\require{cancel}\)
Physics LibreTexts

12.5: Summary, the Maxwell Relations, and the Gibbs-Helmholtz Relations

  • Page ID
    7289
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    \[d U =T d S-P d V+\sum X d Y\]

    \[d H =T d S+V d P+\sum X d Y\]

    \[d A =-S d T-P d V+\sum X d Y\]

    \[d G =-S d T+V d P+\sum X d Y\]

    If the only reversible work done on or by a system is PdV work of expansion or compression, we have the more familiar forms

    \[d U =T d S-P d V\]

    \[d H =T d S+V d P\]

    \[d A =-S d T-P d V\]

    \[d G =-S d T+V d P\]

    All four thermodynamic functions are functions of state (and hence their differentials are exact differentials) and therefore

    \[\left(\frac{\partial U}{\partial S}\right)_{V}=T \quad\left(\frac{\partial U}{\partial V}\right)_{S}=-P\]

    \[\left(\frac{\partial H}{\partial S}\right)_{P}=T \quad\left(\frac{\partial H}{\partial P}\right)_{S}=V\]

    \[\left(\frac{\partial A}{\partial T}\right)_{V}=-S \quad\left(\frac{\partial A}{\partial V}\right)_{T}=-P\]

    \[\left(\frac{\partial G}{\partial T}\right)_{P}=-S \qquad\left(\frac{\partial G}{\partial P}\right)_{T}=V\]

    Further, by equating the mixed second derivatives, we obtain the four Maxwell Thermodynamic Relations:

    \[\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}\]

    \[\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}\]

    \[\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}\]

    \[\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}\]

    The Gibbs-Helmholtz Relations are trivially found from A = UTS and together with equations 12.6.11a and 12.6.12a. G = HTS They are

    \[U=A-T\left(\frac{\partial A}{\partial T}\right)_{V}\]

    \[H=G-T\left(\frac{\partial G}{\partial T}\right)_{P}\]


    12.5: Summary, the Maxwell Relations, and the Gibbs-Helmholtz Relations is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

    • Was this article helpful?