4.4: Ordinary Canonical Ensemble (OCE)
( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand\Dalpha
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[1], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dbeta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[2], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dgamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[3], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Ddelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[4], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Depsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[5], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dvarepsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[6], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dzeta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[7], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Deta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[8], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dtheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[9], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dvartheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[10], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Diota
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[11], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dkappa
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[12], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dlambda
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[13], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Dvarpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[14], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\DGamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[15], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\DDelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[16], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\DTheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[17], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vmu
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[18], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vnu
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[19], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vxi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[20], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vom
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[21], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[22], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[23], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vrho
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[24], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarrho
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[25], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vsigma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[26], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarsigma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[27], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vtau
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[28], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vupsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[29], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vphi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[30], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarphi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[31], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vchi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[32], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vpsi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[33], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\Vomega
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[34], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\VGamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[35], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\VDelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[36], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\newcommand\BI{\mib I}}
\)
\newcommand { M}
\newcommand { m}
}
\( \newcommand\tcb{\textcolor{blue}\)
\( \newcommand\tcr{\textcolor{red}\)
1$#1_$
\newcommand\SZ{\textsf Z}} \( \newcommand\kFd{k\ns_{\RF\dar}\)
\newcommand\mutB{\tilde\mu}\ns_\ssr{B}
\( \newcommand\xhihOZ
Callstack: at (Template:MathJaxArovas), /content/body/div/span[1], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
\( \newcommand\labar
Callstack: at (Template:MathJaxArovas), /content/body/div/span[2], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/04:_Statistical_Ensembles/4.04:_Ordinary_Canonical_Ensemble_(OCE)), /content/body/p/span, line 1, column 23
Canonical Distribution and Partition Function
Consider a system S in contact with a world W, and let their union U=W∪S be called the ‘universe’. The situation is depicted in Figure [universe]. The volume V∗S and particle number N∗S of the system are held fixed, but the energy is allowed to fluctuate by exchange with the world W. We are interested in the limit N∗S→∞, N∗W→∞, with N∗S≪N∗W, with similar relations holding for the respective volumes and energies. We now ask what is the probability that S is in a state |n⟩ with energy E∗n. This is given by the ratio
P∗n=lim
Then
\begin{align} \ln P\ns_n&=\ln D\ns_{\ssr{W}} (E\ns_{\ssr{U}}-E\ns_n) - \ln D\ns_{\ssr{U}} (E\ns_{\ssr{U}})\\ &=\ln D\ns_{\ssr{W}} (E\ns_{\ssr{U}})- \ln D\ns_{\ssr{U}}(E\ns_{\ssr{U}}) - E\ns_n\>{\pz\ln D\ns_{\ssr{W}}(E)\over \pz E}\bigg|\nd_{E=E\ns_{\ssr{U}}} \!\! + \ldots\\ &\equiv -\alpha-\beta E\ns_n\ . \end{align}
The constant \beta is given by
\beta={\pz\ln D\ns_{\ssr{W}}(E)\over\pz E}\bigg|\nd_{E=E\ns_{\ssr{U}}} = {1\over \kT}\ .
Thus, we find P\ns_n=e^{-\alpha}\,e^{-\beta E\ns_n}. The constant \alpha is fixed by the requirement that \sum_n P\ns_n=1:
P\ns_n={1\over Z}\, e^{-\beta E\ns_n}\qquad,\qquad Z(T,V,N)=\sum_n e^{-\beta E\ns_n}=\Tra e^{-\beta \HH}\ .
We’ve already met Z(\beta) in Equation \ref{Zlap} – it is the Laplace transform of the density of states. It is also called the partition function of the system S. Quantum mechanically, we can write the ordinary canonical density matrix as
\vrhhat={e^{-\beta\HH}\over \Tra e^{-\beta\HH}}\quad,
which is known as the Gibbs distribution. Note that \big[\vrhhat,\HH\big]=0, hence the ordinary canonical distribution is a stationary solution to the evolution equation for the density matrix. Note that the OCE is specified by three parameters: T, V, and N.
The difference between P(E_n) and P_n
Let the total energy of the Universe be fixed at E\ns_{\ssr{U}}. The joint probability density P(E\ns_{\ssr{S}},E\ns_{\ssr{W}}) for the system to have energy E\ns_\RS and the world to have energy E\ns_{\ssr{W}} is
P(E\ns_{\ssr{S}},E\ns_{\ssr{W}})=D\ns_{\ssr{S}}(E\ns_{\ssr{S}}) \, D\ns_{\ssr{W}}(E\ns_{\ssr{W}}) \,\delta(E\ns_{\ssr{U}}-E\ns_{\ssr{S}}-E\ns_{\ssr{W}}) \big/ D\ns_{\ssr{U}}(E\ns_{\ssr{U}})\ ,
where
D\ns_{\ssr{U}}(E\ns_{\ssr{U}})=\impi dE\ns_{\ssr{S}}\>D\ns_{\ssr{S}}(E\ns_{\ssr{S}})\,D\ns_{\ssr{W}}(E\ns_{\ssr{U}}-E\ns_{\ssr{S}})\ ,
which ensures that \int\!dE\ns_{\ssr{S}}\int\!dE\ns_{\ssr{W}}\,P(E\ns_{\ssr{S}},E\ns_{\ssr{W}})=1. The probability density P(E\ns_{\ssr{S}}) is defined such that P(E\ns_{\ssr{S}})\,dE\ns_{\ssr{S}} is the (differential) probability for the system to have an energy in the range [E\ns_{\ssr{S}},E\ns_{\ssr{S}}+dE\ns_{\ssr{S}}]. The units of P(E\ns_{\ssr{S}}) are E^{-1}. To obtain P(E\ns_{\ssr{S}}), we simply integrate the joint probability density P(E\ns_{\ssr{S}},E\ns_{\ssr{W}}) over all possible values of E\ns_{\ssr{W}}, obtaining
P(E\ns_{\ssr{S}})={D\ns_{\ssr{S}}(E\ns_{\ssr{S}})\,D\ns_{\ssr{W}}(E\ns_{\ssr{U}}-E\ns_{\ssr{S}})\over D\ns_{\ssr{U}}(E\ns_{\ssr{U}})}\ ,
as we have in Equation \ref{OCErat}.
Now suppose we wish to know the probability P\ns_n that the system is in a particular state \sket{n} with energy E\ns_n. Clearly
P\ns_n=\lim_{\RDelta E\to 0}{\hbox{ probability that $E\ns_{\ssr{S}}\in[E\ns_n,E\ns_n+\RDelta E]$}\over \hbox{ \ \# of S states with $E\ns_{\ssr{S}}\in [E\ns_n,E\ns_n+\RDelta E]$\ }} ={P(E\ns_n)\,\RDelta E\over D\ns_{\ssr{S}}(E\ns_n)\,\RDelta E} = {D\ns_{\ssr{W}}(E\ns_{\ssr{U}}-E\ns_n)\over D\ns_{\ssr{U}}(E\ns_{\ssr{U}})}\ .
Additional remarks
The formula of Equation \ref{OCErat} is quite general and holds in the case where N\ns_{\ssr{S}}/N\ns_{\ssr{W}}=\CO(1), so long as we are in the thermodynamic limit, where the energy associated with the interface between S and W may be neglected. In this case, however, one is not licensed to perform the subsequent Taylor expansion, and the distribution P\ns_n is no longer of the Gibbs form. It is also valid for quantum systems6, in which case we interpret P\ns_n=\texpect{n}{\vrh\ns_{\ssr{S}}}{n} as a diagonal element of the density matrix \vrh\ns_{\ssr{S}}. The density of states functions may then be replaced by
\begin{split} D\ns_{\ssr{W}}(E\ns_{\ssr{U}}-E\ns_n)\,\RDelta E &\to e^{S\ns_{\ssr{W}}(E\ns_{\ssr{U}}-E\ns_n\,,\,\RDelta E)} \equiv \mathop{\textsf{Tra}}_{\ssr{W}} \hskip-0.7cm\int\limits_{E\ns_{\ssr{U}}-E\ns_n}^{E\ns_{\ssr{U}}-E\ns_n+\RDelta E}\hskip-0.7cm dE\>\delta(E-\HH\ns_{\ssr{W}})\\ D\ns_{\ssr{U}}(E\ns_{\ssr{U}})\,\RDelta E &\to e^{S\ns_{\ssr{U}}(E\ns_{\ssr{U}}\,,\,\RDelta E)} \equiv \mathop{\textsf{Tra}}_{\ssr{U}} \hskip-0.4cm\int\limits_{E\ns_{\ssr{U}}}^{E\ns_{\ssr{U}}+\RDelta E}\hskip-0.4cm dE\>\delta(E-\HH\ns_{\ssr{U}})\quad. \end{split}
The off-diagonal matrix elements of \vrh_{\ssr{S}} are negligible in the thermodynamic limit.
Averages within the OCE
To compute averages within the OCE,
\big\langle\HA\big\rangle=\Tra\!\big(\vrhhat\,\HA\big) ={\sum_n\texpect{n}{\HA}{n}\>e^{-\beta E\ns_n}\over\sum_n e^{-\beta E\ns_n}}\ ,
where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we have
\vrh(\Bvphi)={1\over Z}\,e^{-\beta \HH(\Bvphi)} \quad,\quad Z=\Tra e^{-\beta \HH}=\int\!\! d\mu \> e^{-\beta \HH(\Bvphi)}\ ,
with d\mu=\frac{1}{N!}\prod_{j=1}^N (d^d q\nd_j\,d^d p\nd_j / h^d) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,
\langle A \rangle =\Tra(\vrh A) = {\int\!\! d\mu\>A(\Bvphi)\,e^{-\beta \HH(\Bvphi)}\over \int\!\! d\mu\> e^{-\beta \HH(\Bvphi)}}\ .
Entropy and Free Energy
The Boltzmann entropy is defined by
S=-\kB\Tra\!\big(\vrhhat\ln\vrhhat) = -\kB\sum_n P\ns_n\,\ln P\ns_n\ .
The Boltzmann entropy and the statistical entropy S=\kB\ln D(E) are identical in the thermodynamic limit. We define the Helmholtz free energy F(T,V,N) as
F(T,V,N)=-\kT\ln Z(T,V,N)\ ,
hence
P\ns_n=e^{\beta F}\, e^{-\beta E\ns_n} \qquad,\qquad \ln P\ns_n=\beta F-\beta E\ns_n\ .
Therefore the entropy is
S=-\kB\sum_n P\ns_n\, \big(\beta F-\beta E\ns_n\big)\\ =-{F\over T} + {\langle \,\HH\,\rangle\over T}\ ,
which is to say F=E-TS, where
E=\sum_n P\ns_n \,E\ns_n = {\Tra \HH \,e^{-\beta\HH}\over \Tra e^{-\beta\HH}}
is the average energy. We also see that
Z=\Tra e^{-\beta\HH}=\sum_n e^{-\beta E\ns_n} \quad\Longrightarrow\quad E={\sum_n E\ns_n\,e^{-\beta E\ns_n}\over\sum_n e^{-\beta E\ns_n}}=-{\pz\over\pz\beta}\,\ln Z={\pz\over\pz\beta}\big(\beta F\big)\ .
Thus, F(T,V,N) is a Legendre transform of E(S,V,N), with
dF=-S\,dT - p\,dV + \mu\,dN\ ,
which means
S=-\pabc{F}{T}{V,N} \qquad,\qquad p=-\pabc{F}{V}{T,N} \qquad,\qquad \mu=+\pabc{F}{N}{T,V}\ .
Fluctuations in the OCE
In the OCE, the energy is not fixed. It therefore fluctuates about its average value E=\langle \HH\rangle. Note that
\begin{split} -{\pz E\over\pz\beta}&=\kB T^2\,{\pz E\over\pz T}={\pz^2\ln Z\over\pz\beta^2}\\ &={\Tra \HH^2\,e^{-\beta\HH}\over \Tra e^{-\beta\HH}} - \Bigg({\Tra \HH \,e^{-\beta\HH}\over \Tra e^{-\beta\HH}}\Bigg)^{\!\!2}\\ &=\blangle\HH^2\brangle - \blangle\HH\brangle^2\ . \end{split}
Thus, the heat capacity is related to the fluctuations in the energy, just as we saw at the end of §4:
C\ns_V=\pabc{E}{T}{V,N}={1\over \kB T^2}\, \Big(\blangle \HH^2\brangle - \blangle\HH\brangle^2\Big)
For the nonrelativistic ideal gas, we found C\ns_V={d\over 2}\,N\kB, hence the ratio of RMS fluctuations in the energy to the energy itself is
{\sqrt{\blangle\,(\RDelta\HH)^2\,\brangle} \over\langle\HH\rangle}= {\sqrt{\kB T^2\,C\ns_V}\over {d\over 2}N\kT} = \sqrt{2\over Nd}\ ,
and the ratio of the RMS fluctuations to the mean value vanishes in the thermodynamic limit.
The full distribution function for the energy is
P(\CE)=\blangle\delta(\CE-\HH)\brangle={\Tra \delta(\CE-\HH)\,e^{-\beta\HH}\over \Tra e^{-\beta\HH}}={1\over Z}\,D(\CE)\,e^{-\beta \CE}\ .
Thus,
P(\CE)={e^{-\beta\left[\CE-TS(\CE)\right]}\over\int\!d\CE'\,e^{-\beta\left[\CE'-TS(\CE')\right]}}\ , \label{PEOCE}
where S(\CE)=\kB\ln D(\CE) is the statistical entropy. Let’s write \CE=E+\delta \CE, where E extremizes the combination \CE-T\,S(\CE), the solution to T\,S'(E)=1, where the energy derivative of S is performed at fixed volume V and particle number N. We now expand S(E+\delta \CE) to second order in \delta \CE, obtaining
S(E+\delta \CE)=S(E) + {\delta \CE\over T} -{\big(\delta \CE\big)^2\over 2 T^2 \,C\ns_V}\, + \ldots
Recall that S''(E)={\pz\over\pz E}\left({1\over T}\right) = -{1\over T^2 C\ns_V}. Thus,
\CE-T\,S(\CE)=E - T\,S(E) + {(\delta \CE)^2\over 2 T\,C\ns_V} + \CO\big((\delta \CE)^3\big)\ . \label{EminusTS}
Applying this to both numerator and denominator of Equation \ref{PEOCE}, we obtain7
P(\CE)=\CN\,\exp\Bigg[\!-{(\delta \CE)^2\over 2\kB T^2\,C\ns_V}\Bigg]\ ,
where \CN=(2\pi\kB T^2 C\ns_V)^{-1/2} is a normalization constant which guarantees \int\!d\CE\,P(\CE)=1. Once again, we see that the distribution is a Gaussian centered at \langle\CE\rangle = E, and of width (\RDelta \CE)\nd_{\ssr{RMS}}=\sqrt{\kB T^2\,C\ns_V}. This is a consequence of the Central Limit Theorem.
Thermodynamics revisited
The average energy within the OCE is
E=\sum_n E\ns_n P\ns_n\ ,
and therefore
\begin{split} dE=& \sum_n E\ns_n \,dP\ns_n + \sum_n P\ns_n\,dE\ns_n\\ &=\dbar Q-\dbar W\ , \end{split}\label{smfl}
where
\begin{aligned} \dbar W&=-\sum_n P\ns_n\,dE\ns_n\\ \dbar Q&=\sum_n E\ns_n\,dP\ns_n\ .\end{aligned}
Finally, from P\ns_n=Z^{-1}\,e^{-E\ns_n/k\ns_\RB T}, we can write
E\ns_n=-\kT\ln Z - \kT\ln P\ns_n\ ,
with which we obtain
\begin{split} \dbar Q&=\sum_n E\ns_n\,dP\ns_n\\ &=-\kT\ln Z\sum_n dP\ns_n - \kT\sum_n \ln P\ns_n\>dP\ns_n\\ &=T \,d\Big(\!-\kB\sum_n P\ns_n\ln P\ns_n\Big)=T\,dS\ . \end{split}
Note also that
\begin{align} \dbar W&=-\sum_n P\ns_n \, dE\ns_n \\ &=-\sum_nP\ns_n \Bigg(\!\sum_i {\pz E\ns_n\over\pz X\ns_i}\>dX\ns_i\Bigg)\\ &=-\sum_{n,i} P\ns_n\,\expect{n}{\pz \HH\over\pz X\ns_i}{n}\>dX\ns_i \equiv\sum_i F\ns_i\,dX\ns_i\ , \end{align} \label{workeqn}
so the generalized force F\ns_i conjugate to the generalized displacement dX\ns_i is
F\ns_i=-\sum_n P\ns_n\,{\pz E\ns_n\over\pz X\ns_i}=-\,\bigg\langle {\pz\HH\over\pz X\ns_i}\bigg\rangle\ . \label{thermforce}
This is the force acting on the system8. In the chapter on thermodynamics, we defined the generalized force conjugate to X\ns_i as y\ns_i\equiv - F\ns_i.
![[SMfirst] Microscopic, statistical interpretation of the First Law of Thermodynamics.](https://phys.libretexts.org/@api/deki/files/14926/clipboard_eb7715a3442fc960e06be9c37f29ce83a.png?revision=1&size=bestfit&width=674&height=504)
Thus we see from Equation \ref{smfl} that there are two ways that the average energy can change; these are depicted in the sketch of Figure \PageIndex{1}. Starting from a set of energy levels \{E\ns_n\} and probabilities \{P\ns_n\}, we can shift the energies to \{E'_n\}. The resulting change in energy (\RDelta E)\ns_{\ssr{I}}=-W is identified with the work done on the system. We could also modify the probabilities to \{P'_n\} without changing the energies. The energy change in this case is the heat absorbed by the system: (\RDelta E)\ns_{\ssr{II}} = Q. This provides us with a statistical and microscopic interpretation of the First Law of Thermodynamics.
Generalized Susceptibilities
Suppose our Hamiltonian is of the form
\HH=\HH(\lambda)=\HH\ns_0-\lambda\,{\hat Q}\ ,
where \lambda is an intensive parameter, such as magnetic field. Then
Z(\lambda)=\Tra e^{-\beta(\HH\ns_0-\lambda{\hat Q})}
and
{1\over Z}\,{\pz Z\over\pz \lambda}=\beta\cdot{1\over Z}\Tra\Big( {\hat Q}\,e^{-\beta\HH(\lambda)}\Big)=\beta\>\langle{\hat Q}\rangle\ .
But then from Z=e^{-\beta F} we have
Q(\lambda,T)=\langle\,{\hat Q}\,\rangle=-\pabc{F}{\lambda}{T}\ .
Typically we will take Q to be an extensive quantity. We can now define the susceptibility \xhi as
\xhi={1\over V}{\pz Q\over\pz\lambda}=-{1\over V}\,{\pz^2\!F\over\pz\lambda^2}\ .
The volume factor in the denominator ensures that \xhi is intensive.
It is important to realize that we have assumed here that \big[\HH\ns_0\,,\,{\hat Q}\big]=0, the ‘bare’ Hamiltonian \HH\ns_0 and the operator {\hat Q} commute. If they do not commute, then the response functions must be computed within a proper quantum mechanical formalism, which we shall not discuss here.
Note also that we can imagine an entire family of observables \big\{{\hat Q}\ns_k\big\} satisfying \big[{\hat Q}\ns_{k\ns}\,,\,{\hat Q}\ns_{k'}\big]=0 and \big[\HH\ns_0\,,\,{\hat Q}\ns_k\big]=0, for all k and k'. Then for the Hamiltonian
\HH\ns(\Vlambda)=\HH\ns_0-\sum_k\lambda\ns_k\,{\hat Q}\ns_k\ ,
we have that
Q\ns_k({\Vlambda},T)=\langle\,{\hat Q}\ns_k\,\rangle=-\pabc{F}{\lambda\ns_k}{T,\,N\ns_a,\,\lambda\ns_{k'\ne k}}
and we may define an entire matrix of susceptibilities,
\xhi\ns_{kl}={1\over V}{\pz Q\ns_k\over\pz\lambda\ns_l}=-{1\over V}\,{\pz^2\!F\over\pz\lambda\ns_k\,\pz\lambda\ns_l}\ .