8.5: Diffusion and the Lorentz model
( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand\Dalpha
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[1], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dbeta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[2], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dgamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[3], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Ddelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[4], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Depsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[5], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dvarepsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[6], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dzeta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[7], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Deta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[8], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dtheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[9], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dvartheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[10], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Diota
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[11], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dkappa
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[12], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dlambda
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[13], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Dvarpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[14], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\DGamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[15], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\DDelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[16], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\DTheta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[17], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vmu
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[18], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vnu
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[19], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vxi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[20], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vom
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[21], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[22], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarpi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[23], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vrho
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[24], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarrho
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[25], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vsigma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[26], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarsigma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[27], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vtau
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[28], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vupsilon
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[29], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vphi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[30], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vvarphi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[31], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vchi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[32], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vpsi
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[33], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\Vomega
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[34], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\VGamma
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[35], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\VDelta
Callstack: at (Template:MathJaxArovas), /content/body/div/p[1]/span[36], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\newcommand\BI{\mib I}}
\)
\newcommand { M}
\newcommand { m}
}
\( \newcommand\tcb{\textcolor{blue}\)
\( \newcommand\tcr{\textcolor{red}\)
1$#1_$
\newcommand\SZ{\textsf Z}} \( \newcommand\kFd{k\ns_{\RF\dar}\)
\newcommand\mutB{\tilde\mu}\ns_\ssr{B}
\( \newcommand\xhihOZ
Callstack: at (Template:MathJaxArovas), /content/body/div/span[1], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
\( \newcommand\labar
Callstack: at (Template:MathJaxArovas), /content/body/div/span[2], line 1, column 1 at template() at (Bookshelves/Thermodynamics_and_Statistical_Mechanics/Book:_Thermodynamics_and_Statistical_Mechanics_(Arovas)/08:_Nonequilibrium_Phenomena/8.05:_Diffusion_and_the_Lorentz_model), /content/body/p/span, line 1, column 23
Failure of the relaxation time approximation
As we remarked above, the relaxation time approximation fails to conserve any of the collisional invariants. It is therefore unsuitable for describing hydrodynamic phenomena such as diffusion. To see this, let f(r,v,t) be the distribution function, here written in terms of position, velocity, and time rather than position, momentum, and time as befor7. In the absence of external forces, the Boltzmann equation in the relaxation time approximation is ∂f∂t+v⋅∂f∂r=−f−f0τ . The density of particles in velocity space is given by ˜n(v,t)=∫d3rf(r,v,t) . In equilibrium, this is the Maxwell distribution times the total number of particles: \boldsymbol{{\tilde n}\ns_0(\Bv)=N P\ns_\ssr{M}(\Bv)}. The number of particles as a function of time, N(t)=∫d3v˜n(v,t), should be a constant.
Integrating the Boltzmann equation one has ∂˜n∂t=−˜n−˜n∗0τ . Thus, with δ˜n(v,t)=˜n(v,t)−˜n∗0(v), we have δ˜n(v,t)=δ˜n(v,0)e−t/τ . Thus, ˜n(v,t) decays exponentially to zero with time constant τ, from which it follows that the total particle number exponentially relaxes to N∗0. This is physically incorrect; local density perturbations can’t just vanish. Rather, they diffuse.
Modified Boltzmann equation and its solution
To remedy this unphysical aspect, consider the modified Boltzmann equation, ∂f∂t+v⋅∂f∂r=1τ[−f+∫dˆv4πf]≡1τ(P−1)f , where P is a projector onto a space of isotropic functions of v: PF=∫dˆv4πF(v) for any function F(v). Note that PF is a function of the speed v=|v|. For this modified equation, known as the Lorentz model, one finds ∂∗t˜n=0.
The model in Equation [Lormod] is known as the Lorentz model8. To solve it, we consider the Laplace transform, ˆf(k,v,s)=∞∫0dte−st∫d3re−ik⋅rf(r,v,t) . Taking the Laplace transform of Equation [Lormod], we find (s+iv⋅k+τ−1)ˆf(k,v,s)=τ−1Pˆf(k,v,s)+f(k,v,t=0) . We now solve for Pˆf(k,v,s): ˆf(k,v,s)=τ−1s+iv⋅k+τ−1Pˆf(k,v,s)+f(k,v,t=0)s+iv⋅k+τ−1 , which entails Pˆf(k,v,s)=[∫dˆv4πτ−1s+iv⋅k+τ−1]Pˆf(k,v,s)+∫dˆv4πf(k,v,t=0)s+iv⋅k+τ−1 . Now we have ∫dˆv4πτ−1s+iv⋅k+τ−1=1∫−1dxτ−1s+ivkx+τ−1=1vktan−1(vkτ1+τs) . Thus, Pf(k,v,s)=[1−1vkτtan−1(vkτ1+τs)]−1∫dˆv4πf(k,v,t=0)s+iv⋅k+τ−1 . We now have the solution to Lorentz’s modified Boltzmann equation: ˆf(k,v,s)=τ−1s+iv⋅k+τ−1[1−1vkτtan−1(vkτ1+τs)]−1∫dˆv4πf(k,v,t=0)s+iv⋅k+τ−1+f(k,v,t=0)s+iv⋅k+τ−1 .
Let us assume an initial distribution which is perfectly localized in both r and v: f(r,v,t=0)=δ(v−v∗0) . For these initial conditions, we find ∫dˆv4πf(k,v,t=0)s+iv⋅k+τ−1=1s+iv∗0⋅k+τ−1⋅δ(v−v∗0)4πv20 . We further have that 1−1vkτtan−1(vkτ1+τs)=sτ+13k2v2τ2+… , and therefore ˆf(k,v,s)=τ−1s+iv⋅k+τ−1⋅τ−1s+iv∗0⋅k+τ−1⋅1s+13v20k2τ+…⋅δ(v−v∗0)4πv20+δ(v−v∗0)s+iv∗0⋅k+τ−1 . We are interested in the long time limit t≫τ for f(r,v,t). This is dominated by s∼t−1, and we assume that τ−1 is dominant over s and iv⋅k. We then have ˆf(k,v,s)≈1s+13v20k2τ⋅δ(v−v∗0)4πv20 . Performing the inverse Laplace and Fourier transforms, we obtain f(r,v,t)=(4πDt)−3/2e−r2/4Dt⋅δ(v−v∗0)4πv20 , where the diffusion constant is D=13v20τ . The units are [D]=L2/T. Integrating over velocities, we have the density n(r,t)=∫d3vf(r,v,t)=(4πDt)−3/2e−r2/4Dt . Note that ∫d3rn(r,t)=1 for all time. Total particle number is conserved!