Skip to main content
Physics LibreTexts

15.2: Adiabatic Decompression

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We are going to calculate an expression for \((∂T/∂P)_S\). The expression will be positive, since T and P increase together. We shall consider the entropy as a function of temperature and pressure, and, with the variables

    Screen Shot 2019-07-08 at 12.06.25 PM.png

    we shall start with the cyclic relation

    \[\left(\frac{\partial S}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{S}\left(\frac{\partial P}{\partial S}\right)_{T}=-1. \label{15.2.1}\]

    The middle term is the one we want. Let’s find expressions for the first and third partial derivatives in terms of things that we can measure.

    In a reversible process \(dS = dQ/T\), and, in an isobaric process, \(dQ = C_PdT\). Therefore

    \[ \left(\frac{\partial S}{\partial T}\right)_{p}=\frac{C_{p}}{T}.\]

    Also, we have a Maxwell relation (Equation 12.6.16). \(\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}\). Thus Equation \ref{15.2.1} becomes

    \[\left(\frac{\partial T}{\partial P}\right)_{S}=\frac{T}{C_{P}}\left(\frac{\partial V}{\partial T}\right)_{P}. \label{15.2.2}\]

    Check the dimensions of this. Note also that CP can be total, specific or molar, provided that V is correspondingly total, specific or molar. (∂T/∂P)S is, of course, intensive.

    If the gas is an ideal gas, the equation of state is \(PV = RT\), so that

    \[ \left(\frac{\partial V}{\partial T}\right)_{P}=\frac{R}{P}=\frac{V}{T}.\]

    Equation \ref{15.2.2} therefore becomes

    \[\left(\frac{\partial T}{\partial P}\right)_{S}=\frac{V}{C_{P}}.\]

    This page titled 15.2: Adiabatic Decompression is shared under a CC BY-NC license and was authored, remixed, and/or curated by Jeremy Tatum.

    • Was this article helpful?