9.4: Problems
- Page ID
- 32981
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- Suppose that a particle is represented by the wave function \(\Psi=\sin (\mathrm{kx}-\omega \mathrm{t})+\sin (-\mathrm{kx}-\omega \mathrm{t})\).
- Use trigonometry to simplify this wave function.
- Compute the x and t dependence of the probability of finding the particle by squaring the wave function.
- Explain what this result says about the time dependence of the probability of finding the particle. Does this make sense?
- Repeat the above problem for a particle represented by the wave function \(\Psi=\exp [\mathrm{i}(\mathrm{kx}-\omega \mathrm{t})]+\exp [\mathrm{i}(-\mathrm{kx}-\omega \mathrm{t})]\).
- Determine if the wavefunction \(\psi(x)=\exp \left(i C x^{2}\right)\) is invariant under displacement in the sense that the displaced wave function differs from the original wave function by just a phase factor.
- Just as invariance under the substitution \(x \rightarrow x+D\) is associated with momentum, invariance under the substitution \(x \rightarrow-x\) is associated with a quantum mechanical variable called parity, denoted \(P\). However, unlike momentum, which can take on any numerical value, parity can take on only two possible values, \(\pm 1\). The parity of a wave function \(\Psi(x) \text { is }+1 \text { if } \Psi(-x)=\psi(x)\), while the parity is \(-1 \text { if } \Psi(-\mathrm{x})=-\Psi(\mathrm{x}) . \text { If } \Psi(\mathrm{x})\) satisfies neither of these conditions, then it has no definite value of parity.
- What is the parity of \(\Psi=\sin (\mathrm{kx}) ? \text { Of } \Psi=\cos (\mathrm{kx})\)? The quantity k is a constant.
- Is \(\psi(x)=\cos (k x)\) invariant under the substitution x = x + D for all possible values of D? Does this wave function have a definite value of the momentum?
- Show that a wave function with a definite value of the momentum does not have a definite value of parity. Are momentum and parity compatible variables?
- Realizing that \(\cos (k x-\omega t)\) can be written in terms of complex exponential functions, give a physical interpretation of the meaning of the above cosine wave function. In particular, what are the possible values of the associated particle’s momentum and energy?
- The time reversal operation T makes the substitution \(\mathrm{t} \rightarrow-\mathrm{t}\). Similar to parity, time reversal can only take on values \(\pm 1\). Is symmetry of a wave function under time reversal, i. e., \(\text { i. e., } \psi(-t)=\Psi(t)\), consistent with a definite value of the energy? Hint: Any wave function corresponding to a definite value of energy E must have the form \(\Psi=A \exp (-\mathrm{iEt} / \hbar)\) where A is not a function of time t. (Why?)
- The operation C takes the complex conjugate of the wave function, i. e., it makes the substitution \(\mathrm{i} \rightarrow-\mathrm{i}\). In modern quantum mechanics this corresponds to interchanging particles and antiparticles, and is called charge conjugation. What does the combined operation CPT do to a complex plane wave, i. e., one with definite wave vector and frequency?
- Make an energy level diagram for the case of a massless particle in a box.
- Compare |Π| for the ground state of a non-relativistic particle in a box of size a with ΔΠ obtained from the uncertainty principle in this situation. Hint: What should you take for \(\Delta \mathrm{x}\)?
- Imagine that a billiard table has an infinitely high rim around it. For this problem assume that \(\hbar=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\).
- If the table is 1.5 m long and if the mass of a billiard ball is M = 0.5 kg, what is the billiard ball’s lowest or ground state energy? Hint: Even though the billiard table is two dimensional, treat this as a one-dimensional problem. Also, treat the problem nonrelativistically and ignore the contribution of the rest energy to the total energy.
- The energy required to lift the ball over a rim of height H against gravity is \(\mathrm{U}=\mathrm{MgH} \text { where } \mathrm{g}=9.8 \mathrm{~m} \mathrm{~s}^{-2}\). What rim height makes the gravitational potential energy equal to the ground state energy of the billiard ball calculated above.
- If the rim is actually twice as high as calculated above but is only 0.1 m thick, determine the probability of the ball penetrating the rim.
Figure \(\PageIndex{7}\):: Real part of the wave function ψ, corresponding to a fixed total energy E, occurring in a region of spatially variable potential energy \(\mathrm{U}(\mathrm{x})\). Notice how the wavelength \(\lambda\) changes as the kinetic energy \(\mathrm{K}=\mathrm{E}-\mathrm{U}\) changes.
- The real part of the wave function of a particle with positive energy E passing through a region of negative potential energy is shown in Figure \(\PageIndex{7}\):.
- If the total energy is definitely E, what is the dependence of this wave function on time?
- Is the wave function invariant under displacement in space in this case? Why or why not?
- Does this wave function correspond to a definite value of momentum? Why or why not?
- Is the momentum compatible with the energy in this case? Why or why not?
- Assuming again that \(\hbar=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\), what are the possible speeds of a toy train of mass 3 kg running around a circular track of radius 0.8 m?
- If a particle of zero mass sliding around a circular loop of radius R can take on angular momenta \(\mathrm{L}_{\mathrm{m}}=\mathrm{m} \hbar\) where \(m\) is an integer, what are the possible kinetic energies of the particle? Hint: Remember that \(\mathrm{L}=\Pi \mathrm{R}\).