Skip to main content
Physics LibreTexts

11.6: New Page

  • Page ID
    32994
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For a rigid body rotating about a fixed axle, the moment of inertia is

    \[I=\sum_{i} M_{i} d_{i}^{2}\label{11.23}\]

    where \(\mathrm{d}_{\mathrm{i}}\) is the perpendicular distance of the \(\text { ith }\) particle from the axle. Equations (11.16)-(11.18) are valid for a rigid body consisting of many particles. Furthermore, the moment of inertia is constant in this case, so it can be taken out of the time derivative:

    \[\tau=\frac{d I \omega}{d t}=I \frac{d \omega}{d t}=I \alpha \quad(\text { fixed axle, constant } I)\label{11.24}\]

    The quantity \(a=d \omega / d t\) is called the angular acceleration.

    The sum in the equation for the moment of inertia can be converted to an integral for a continuous distribution of mass. We shall not pursue this here, but simply quote the results for a number of solid objects of uniform density:

    • For rotation of a sphere of mass M and radius R about an axis piercing its center: \(I=2 M R^{2} / 5\).
    • For rotation of a cylinder of mass M and radius R about its axis of symmetry: \(I=M R^{2} / 2\).
    • For rotation of a thin rod of mass M and length L about an axis perpendicular to the rod passing through its center: \(\mathrm{I}=\mathrm{ML}^{2} / 12\).
    • For rotation of an annulus of mass M, inner radius Ra, and outer radius Rb about its axis of symmetry: \(I=M\left(R_{a}^{2}+R_{b}^{2}\right) / 2\).

    This page titled 11.6: New Page is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by David J. Raymond (The New Mexico Tech Press) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?