Skip to main content
Physics LibreTexts

18.12: Static Equilibrium and Elasticity

  • Page ID
    7960
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Check Your Understanding

    12.1. x = 1.3 m

    12.2. (b), (c)

    12.3. 316.7 g; 5.8 N

    12.4. T = 1963 N; F = 1732 N

    12.5. \(\mu_{s}\) < 0.5 cot \(\beta\)

    12.6. \(\vec{F}_{door\; on\; A}\) = 100.0 N \(\hat{i}\) − 200.0 N \(\hat{j}\); \(\vec{F}_{door\; on\; B}\) = −100.0 N \(\hat{i}\) − 200.0 N \(\hat{j}\)

    12.7. 711.0 N; 466.0 N

    12.8. 1167 N; 980 N directed upward at 18° above the horizontal

    12.9. 206.8 kPa; 4.6 x 10−5

    12.10. 5.0 x 10−4

    12.11. 63 mL

    12.12. Fluids have different mechanical properties than those of solids; fluids flow.

    Conceptual Questions

    1. Constant

    3. Magnitude and direction of the force, and its lever arm

    5. True, as the sum of forces cannot be zero in this case unless the force itself is zero.

    7. False, provided forces add to zero as vectors then equilibrium can be achieved.

    9. It helps a wire-walker to maintain equilibrium.

    11. Proof

    13. In contact with the ground, stress in squirrel’s limbs is smaller than stress in human’s limbs.

    15. Tightly

    17. Compressive; tensile

    19. No

    23. It acts as “reinforcement,” increasing a range of strain values before the structure reaches its breaking point.

    Problems

    25. 46.8 N • m

    27. 4,472 N, 153.4°

    29. 23.3 N

    31. 80.0 kg

    33. 40 kg

    35. Right cable, 444.3 N; left cable, 888.5 N; weight of equipment 156.8 N; 16.0 kg

    37. 784 N, 132.8 N

    39. a. 539 N

    b. 461 N

    c. Do not depend on the angle

    41. Tension 778 N; at hinge 778 N at 45° above the horizontal; no

    43. 1500 N; 1620 N at 30°

    45. 1.2 mm

    47. 9.0 cm

    49. 4.0 x 102 N/cm2

    51. 0.149 \(\mu\)m

    53. 0.57 mm

    55. 8.59 mm

    57. 1.35 x 109 Pa

    59. 259.0 N

    61. 0.01%

    63. 1.44 cm

    65. 0.63 cm

    Additional Problems

    69. tan−1\(\left(\dfrac{1}{\mu_{s}}\right)\) = 51.3°

    71. a. At corner 66.7 N at 30° with the horizontal; at floor 177 N at 109° with the horizontal

    b. \(\mu_{s}\) = 0.346

    73. a. 1.10 x 109 N/m2

    b. 5.5 x 10−3

    c. 11.0 mm, 31.4 mm

    Challenge Problems

    75. F = Mg tan \(\theta\); f = 0

    77. With the horizontal, \(\theta\) = 42.2°; \(\alpha\) = 17.8° with the steeper side of the wedge

    79. W\(\left(\dfrac{l_{1}}{l_{2} − 1}\right)\); \(\frac{Wl_{1}}{l_{2}}\) + mg

    81. a. 1.1 mm

    b. 6.6 mm to the right

    c. 1.11 x 105 N

    Contributors and Attributions

    Samuel J. Ling (Truman State University), Jeff Sanny (Loyola Marymount University), and Bill Moebs with many contributing authors. This work is licensed by OpenStax University Physics under a Creative Commons Attribution License (by 4.0).


    This page titled 18.12: Static Equilibrium and Elasticity is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?