1.17.4: The Del-operator
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
In cartesian coordinates (x,y,z) : →∇=∂∂x→ex+∂∂y→ey+∂∂z→ez , gradf=→∇f=∂f∂x→ex+∂f∂y→ey+∂f∂z→ez
In spherical coordinates (r,θ,φ): →∇=∂∂r→er+1r∂∂θ→eθ+1rsinθ∂∂φ→eφgradf=∂f∂r→er+1r∂f∂θ→eθ+1rsinθ∂f∂φ→eφdiv →a=∂ar∂r+2arr+1r∂aθ∂θ+aθrtanθ+1rsinθ∂aφ∂φrot →a=(1r∂aφ∂θ+aθrtanθ−1rsinθ∂aθ∂φ)→er+(1rsinθ∂ar∂φ−∂aφ∂r−aφr)→eθ+(∂aθ∂r+aθr−1r∂ar∂θ)→eφ∇2f=∂2f∂r2+2r∂f∂r+1r2∂2f∂θ2+1r2tanθ∂f∂θ+1r2sin2θ∂2f∂φ2
General orthonormal curvelinear coordinates (u,v,w) can be obtained from cartesian coordinates by the transformation →x=→x(u,v,w). The unit vectors are then given by: →eu=1h1∂→x∂u , →ev=1h2∂→x∂v , →ew=1h3∂→x∂w