Skip to main content
Physics LibreTexts

9.1.4.4: The Del-operator

  • Page ID
    34051
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The \(\nabla\)-operator

    In cartesian coordinates \((x,y,z)\) : \[\vec{\nabla}=\frac{\partial }{\partial x}\vec{e}_{x}+\frac{\partial }{\partial y}\vec{e}_{y}+\frac{\partial }{\partial z}\vec{e}_{z}~~,~~ {\rm grad}f=\vec{\nabla}f=\frac{\partial f}{\partial x}\vec{e}_{x}+\frac{\partial f}{\partial y}\vec{e}_{y}+\frac{\partial f}{\partial z}\vec{e}_{z}\] \[{\rm div}~\vec{a}=\vec{\nabla}\cdot\vec{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}~~,~~ \nabla^2 f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2}\] \[{\rm rot}~\vec{a}=\vec{\nabla}\times\vec{a}= \left(\frac{\partial a_z}{\partial y}-\frac{\partial a_y}{\partial z}\right)\vec{e}_{x}+ \left(\frac{\partial a_x}{\partial z}-\frac{\partial a_z}{\partial x}\right)\vec{e}_{y}+ \left(\frac{\partial a_y}{\partial x}-\frac{\partial a_x}{\partial y}\right)\vec{e}_{z}\] In cylinder coordinates \((r,\varphi,z)\) holds: \[\vec{\nabla}=\frac{\partial }{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial }{\partial \varphi}\vec{e}_{\varphi}+\frac{\partial }{\partial z}\vec{e}_{z}~~,~~ {\rm grad}f=\frac{\partial f}{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial f}{\partial \varphi}\vec{e}_{\varphi}+\frac{\partial f}{\partial z}\vec{e}_{z}\] \[{\rm div}~\vec{a}=\frac{\partial a_r}{\partial r}+\frac{a_r}{r}+\frac{1}{r}\frac{\partial a_\varphi}{\partial \varphi}+\frac{\partial a_z}{\partial z}~~,~~ \nabla^2 f=\frac{\partial^2 f}{\partial r^2}+\frac{1}{r}\frac{\partial f}{\partial r}+\frac{1}{r^2}\frac{\partial^2 f}{\partial \varphi^2}+\frac{\partial^2 f}{\partial z^2}\] \[{\rm rot}~\vec{a}=\left(\frac{1}{r}\frac{\partial a_z}{\partial \varphi}-\frac{\partial a_\varphi}{\partial z}\right)\vec{e}_{r}+ \left(\frac{\partial a_r}{\partial z}-\frac{\partial a_z}{\partial r}\right)\vec{e}_{\varphi}+ \left(\frac{\partial a_\varphi}{\partial r}+\frac{a_\varphi}{r}-\frac{1}{r}\frac{\partial a_r}{\partial \varphi}\right)\vec{e}_{z}\\\]

    In spherical coordinates \((r,\theta,\varphi)\): \[\begin{aligned} \vec{\nabla} &=&\frac{\partial }{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial }{\partial \theta}\vec{e}_{\theta}+\frac{1}{r\sin\theta}\frac{\partial }{\partial \varphi}\vec{e}_{\varphi}\\ {\rm grad}f &=&\frac{\partial f}{\partial r}\vec{e}_{r}+\frac{1}{r}\frac{\partial f}{\partial \theta}\vec{e}_{\theta}+\frac{1}{r\sin\theta}\frac{\partial f}{\partial \varphi}\vec{e}_{\varphi}\\ {\rm div}~\vec{a}&=&\frac{\partial a_r}{\partial r}+\frac{2a_r}{r}+\frac{1}{r}\frac{\partial a_\theta}{\partial \theta}+\frac{a_\theta}{r\tan\theta}+\frac{1}{r\sin\theta}\frac{\partial a_\varphi}{\partial \varphi}\\ {\rm rot}~\vec{a}&=&\left(\frac{1}{r}\frac{\partial a_\varphi}{\partial \theta}+\frac{a_\theta}{r\tan\theta}-\frac{1}{r\sin\theta}\frac{\partial a_\theta}{\partial \varphi}\right)\vec{e}_{r}+ \left(\frac{1}{r\sin\theta}\frac{\partial a_r}{\partial \varphi}-\frac{\partial a_\varphi}{\partial r}-\frac{a_\varphi}{r}\right)\vec{e}_{\theta}+\\ &&\left(\frac{\partial a_\theta}{\partial r}+\frac{a_\theta}{r}-\frac{1}{r}\frac{\partial a_r}{\partial \theta}\right)\vec{e}_{\varphi}\\ \nabla^2 f &=&\frac{\partial^2 f}{\partial r^2}+\frac{2}{r}\frac{\partial f}{\partial r}+\frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2}+\frac{1}{r^2\tan\theta}\frac{\partial f}{\partial \theta}+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \varphi^2}\end{aligned}\]

    General orthonormal curvelinear coordinates \((u,v,w)\) can be obtained from cartesian coordinates by the transformation \(\vec{x}=\vec{x}(u,v,w)\). The unit vectors are then given by: \[\vec{e}_{u}=\frac{1}{h_1}\frac{\partial \vec{x}}{\partial u}~,~~\vec{e}_{v}=\frac{1}{h_2}\frac{\partial \vec{x}}{\partial v}~,~~ \vec{e}_{w}=\frac{1}{h_3}\frac{\partial \vec{x}}{\partial w}\] where the factors \(h_i\) set the norm to 1. Then holds: \[\begin{aligned} {\rm grad}f &=&\frac{1}{h_1}\frac{\partial f}{\partial u}\vec{e}_{u}+\frac{1}{h_2}\frac{\partial f}{\partial v}\vec{e}_{v}+\frac{1}{h_3}\frac{\partial f}{\partial w}\vec{e}_{w}\\ {\rm div}~\vec{a}&=&\frac{1}{h_1h_2h_3}\left(\frac{\partial }{\partial u}(h_2h_3a_u)+\frac{\partial }{\partial v}(h_3h_1a_v)+\frac{\partial }{\partial w}(h_1h_2a_w)\right)\\ {\rm rot}~\vec{a}&=&\frac{1}{h_2h_3}\left(\frac{\partial (h_3a_w)}{\partial v}-\frac{\partial (h_2a_v)}{\partial w}\right)\vec{e}_{u}+ \frac{1}{h_3h_1}\left(\frac{\partial (h_1a_u)}{\partial w}-\frac{\partial (h_3a_w)}{\partial u}\right)\vec{e}_{v}+\\ &&\frac{1}{h_1h_2}\left(\frac{\partial (h_2a_v)}{\partial u}-\frac{\partial (h_1a_u)}{\partial v}\right)\vec{e}_{w}\\ \nabla^2 f &=&\frac{1}{h_1h_2h_3}\left[\frac{\partial }{\partial u}\left(\frac{h_2h_3}{h_1}\frac{\partial f}{\partial u}\right)+ \frac{\partial }{\partial v}\left(\frac{h_3h_1}{h_2}\frac{\partial f}{\partial v}\right)+ \frac{\partial }{\partial w}\left(\frac{h_1h_2}{h_3}\frac{\partial f}{\partial w}\right)\right]\end{aligned}\]


    This page titled 9.1.4.4: The Del-operator is shared under a CC BY license and was authored, remixed, and/or curated by Johan Wevers.

    • Was this article helpful?