Skip to main content
Physics LibreTexts

5.6: Common Forces - Tension

  • Page ID
    69875
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • Define tension forces

    A tension is a force along the length of a medium; in particular, it is a pulling force that acts along a stretched flexible connector, such as a rope or cable. The word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can only exert a pull parallel to its length; thus, a force carried by a flexible connector is a tension with a direction parallel to the connector. Tension is a pull in a connector. Consider the phrase: “You can’t push a rope.” Instead, tension force pulls outward along the two ends of a rope. Consider a person holding a mass on a rope, as shown in Figure \(\PageIndex{4}\). If the 5.00-kg mass in the figure is stationary, then its acceleration is zero and the net force is zero. The only external forces acting on the mass are its weight and the tension supplied by the rope. Thus,

    \[F_{net} = T - w = 0,\nonumber \]

    where T and w are the magnitudes of the tension and weight, respectively, and their signs indicate direction, with up being positive. As we proved using Newton’s second law, the tension equals the weight of the supported mass:

    \[T = w = mg \ldotp \tag{5.14}\nonumber \]

    Thus, for a 5.00-kg mass (neglecting the mass of the rope), we see that

    \[T = mg = (5.00\; kg)(9.80\; m/s^{2}) = 49.0\; N \ldotp\nonumber \]

    If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct observation and measure of the tension force in the rope.

    Figure shows mass m hanging from a rope. Two arrows of equal length, both labeled T are shown along the rope, one pointing up and the other pointing down. An arrow labeled w points down. A free body diagram shows T pointing up and w pointing down.
    Figure \(\PageIndex{4}\): When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force \(\vec{T}\), that force must be parallel to the length of the rope, as shown. By Newton’s third law, the rope pulls with equal force but in opposite directions on the hand and the supported mass (neglecting the weight of the rope). The rope is the medium that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once you have determined the tension in one location, you have determined the tension at all locations along the rope.

    Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a tendon, or a bicycle brake cable. If there is no friction, the tension transmission is undiminished; only its direction changes, and it is always parallel to the flexible connector, as shown in Figure \(\PageIndex{5}\).

    Figure a shows the muscle structure of a human finger. Broad muscles at the base are labeled extensor muscles. These are attached to the extensor tendons. Tendons along the length of the finger are labeled flexor tendons. Arrows labeled T are shown from the upper part of the finger towards the base. Figure b shows a bicycle. Arrows labeled T are shown from the centre of the back wheel to the seat bar, from the seat bar to the handle bar and from the handle towards the back of the bicycle.
    Figure \(\PageIndex{5}\): (a) Tendons in the finger carry force T from the muscles to other parts of the finger, usually changing the force’s direction but not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T from the brake lever on the handlebars to the brake mechanism. Again, the direction but not the magnitude of T is changed.
    : What is the Tension in a Tightrope?

    Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure \(\PageIndex{6}\).

    Figure shows a man at the centre of a tightrope which is supported by two poles. The rope sags under his weight and makes an angle of 5 degrees with the horizontal at each pole. Arrows labeled TL and TR point roughly to the left and right respectively and are parallel to the rope. Arrow labeled w points straight down from the man. These three arrows are also shown in a free body diagram.
    Figure \(\PageIndex{6}\): The weight of a tightrope walker causes a wire to sag by 5.0°. The system of interest is the point in the wire at which the tightrope walker is standing.
    Strategy

    As you can see in Figure \(\PageIndex{6}\), the wire is bent under the person’s weight. Thus, the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors represented pictorially by arrows that have the same direction as the forces and lengths proportional to their magnitudes. The system is the tightrope walker, and the only external forces acting on him are his weight \(\vec{w}\) and the two tensions \(\vec{T}_{L}\) (left tension) and \(\vec{T}_{R}\) (right tension). It is reasonable to neglect the weight of the wire. The net external force is zero, because the system is static. We can use trigonometry to find the tensions. One conclusion is possible at the outset—we can see from Figure \(\PageIndex{6}\)(b) that the magnitudes of the tensions TL and TR must be equal. We know this because there is no horizontal acceleration in the rope and the only forces acting to the left and right are TL and TR. Thus, the magnitude of those horizontal components of the forces must be equal so that they cancel each other out.

    Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is to pick a convenient coordinate system and project the vectors onto its axes. In this case, the best coordinate system has one horizontal axis (x) and one vertical axis (y).

    Solution

    First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to look at a new free-body diagram showing all horizontal and vertical components of each force acting on the system (Figure \(\PageIndex{7}\)).

    There are three figures. The first one shows TL, at an angle of 5 degrees with the horizontal, pointing left. Two dotted arrows, TLx, pointing straight left and TLy pointing straight up, form a right triangle with TL. The second figure shows TR, at an angle of 5 degrees with the horizontal, pointing right. Two dotted arrows, TRx, pointing straight right and TRy pointing straight up, form a right triangle with TR. The third figure shows a free body diagram. TRx points right. TRy and TLy point up. TLx points left. W points down. Net Fx is equal to 0 and net Fy is qual to 0.
    Figure \(\PageIndex{7}\): When the vectors are projected onto vertical and horizontal axes, their components along these axes must add to zero, since the tightrope walker is stationary. The small angle results in T being much greater than w.

    Consider the horizontal components of the forces (denoted with a subscript x):

    \[F_{net x} = T_{Rx} − T_{Lx} \ldotp\nonumber \]

    The net external horizontal force Fnet x = 0, since the person is stationary. Thus,

    \[F_{net x} = 0 = T_{Rx} − T_{Lx} \ldotp\nonumber \]

    \[T_{Lx} = T_{Rx} \ldotp\nonumber \]

    Now observe Figure \(\PageIndex{7}\). You can use trigonometry to determine the magnitude of TL and TR:

    \[\cos 5.0^{o} = \frac{T_{Lx}}{T_{L}}, \quad T_{Lx} = T_{L} \cos 5.0^{o}\nonumber \]

    \[\cos 5.0^{o} = \frac{T_{Rx}}{T_{R}}, \quad T_{Rx} = T_{R} \cos 5.0^{o} \ldotp\nonumber \]

    Equating TLx and TRx:

    \[T_{L} \cos 5.0^{o} = T_{R} \cos 5.0^{o} \ldotp\nonumber \]

    Thus,

    \[T_{L} = T_{R} = T,\nonumber \]

    as predicted. Now, considering the vertical components (denoted by a subscript y), we can solve for T. Again, since the person is stationary, Newton’s second law implies that Fnet y = 0. Thus, as illustrated in the free-body diagram,

    \[F_{net y} = T_{Ly} + T_{Ry} - w = 0 \ldotp\nonumber \]

    We can use trigonometry to determine the relationships among TLy, TRy, and T. As we determined from the analysis in the horizontal direction, TL = TR = T:

    \[\sin 5.0^{o} = \frac{T_{Ly}}{T_{L}}, \quad T_{Ly} = T_{L} \sin 5.0^{o} = T \sin 5.0^{o}\nonumber \]

    \[\sin 5.0^{o} = \frac{T_{Ry}}{T_{R}}, \quad T_{Ry} = T_{R} \sin 5.0^{o} = T \sin 5.0^{o} \ldotp\nonumber \]

    Now we can substitute the vales for TLy and TRy, into the net force equation in the vertical direction:

    \[F_{net y} = T_{Ly} + T_{Ry} - w = 0\nonumber \]

    \[F_{net y} = 0 = T \sin 5.0^{o} + T \sin 5.0^{o} - w = 0\nonumber \]

    \[2T \sin 5.0^{o} - w = 0\nonumber \]

    \[2T \sin 5.0^{o} = w\nonumber \]

    and

    \[T = \frac{w}{2 \sin 5.0^{o}} = \frac{mg}{2 \sin 5.0^{o}},\nonumber \]

    so

    \[T = \frac{(70.0\; kg)(9.80\; m/s^{2})}{2(0.0872)},\nonumber \]

    and the tension is

    \[T = 3930\; N \ldotp\nonumber \]

    Significance

    The vertical tension in the wire acts as a force that supports the weight of the tightrope walker. The tension is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its tension is only a fraction of the tension in the wire. The large horizontal components are in opposite directions and cancel, so most of the tension in the wire is not used to support the weight of the tightrope walker.

    If we wish to create a large tension, all we have to do is exert a force perpendicular to a taut flexible connector, as illustrated in Figure \(\PageIndex{6}\). As we saw in Example 5.13, the weight of the tightrope walker acts as a force perpendicular to the rope. We saw that the tension in the rope is related to the weight of the tightrope walker in the following way:

    \[T = \frac{w}{2 \sin \theta} \ldotp\nonumber \]

    We can extend this expression to describe the tension T created when a perpendicular force (F\(\perp\)) is exerted at the middle of a flexible connector:

    \[T = \frac{F_{\perp}}{2 \sin \theta} \ldotp\nonumber \]

    The angle between the horizontal and the bent connector is represented by \(\theta\). In this case, T becomes large as \(\theta\) approaches zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were horizontal (i.e., \(\theta\) = 0 and sin \(\theta\) = 0). For example, Figure \(\PageIndex{8}\) shows a situation where we wish to pull a car out of the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as straight as possible. The tension in the chain is given by T = \(\frac{F_{\perp}}{2 \sin \theta}\), and since \(\theta\) is small, T is large. This situation is analogous to the tightrope walker, except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where F\(\perp\) is applied.

    Figure shows the top view of a car and a tree. The car is to the left and the tree to the right. A rope is tied between them. It is stretched down at the centre. Each side makes an angle theta with the horizontal. An arrow labeled F perpendicular points straight down. Arrows from the car to the centre and from the tree to the centre are labeled T.
    Figure \(\PageIndex{8}\): We can create a large tension in the chain—and potentially a big mess—by pushing on it perpendicular to its length, as shown.

     


    This page titled 5.6: Common Forces - Tension is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.