22.1: Model I F ∝ v
- Page ID
- 92217
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In this first model, we model the resistive force \(F_{R}\) through a fluid as being proportional to the first power of the velocity \(v\) :
\[F_{R}=-b v\]
where \(b\) is the constant of proportionality; the minus sign shows that the resistive force is always opposite the direction of motion.
Under this model, the net downward force on the falling body is \(m g+F_{R}=m g-b v\). Then by Newton's second law,
\[
\begin{align}
F & =m a \\
m g-b v & =m \frac{d v}{d t}
\end{align}
\]
Dividing through by \(m\), we have
\[\frac{d v}{d t}+\frac{b}{m} v=g\]
This is a first-order differential equation, which you will learn to solve for \(v(t)\) in a course on differential equations. But briefly, for a differential equation of the form
\[\frac{d y}{d t}+p(t) y=q(t),\]
the solution \(y(t)\) is found to be (Ref. [2])
\[y(t)=\frac{1}{\mu(t)}\left[\int \mu(t) q(t) d t+C\right]\]
where \(C\) is a constant that depends on the initial conditions, and \(\mu(t)\) is an integrating factor, given by
\[\mu(t)=\exp \left[\int p(t) d t\right]\]
Since this is a first-order differential equation, there will be one arbitrary constant of integration, and it is the constant \(C\) in Eq. \(\PageIndex{6}\).
Comparing Eq. \(\PageIndex{4}\) with Eq. \(\PageIndex{5}\), we have
\[
\begin{align}
& y(t)=v(t) \\
& p(t)=b / m \\
& q(t)=g .
\end{align}
\]
Then the integrating factor \(\mu(t)\) is, from Eq. \(\PageIndex{7}\),
\[
\begin{align}
\mu(t) & =\exp \left[\int p(t) d t\right] \\
& =\exp \left[\int \frac{b}{m} d t\right] \\
& =A e^{b t / m},
\end{align}
\]
where \(A\) is a constant of integration. The solution to Eq. \(\PageIndex{4}\) is then given by Eq. \(\PageIndex{6}\):
\[
\begin{align}
v & =\frac{e^{-b t / m}}{A}\left[\int A e^{b t / m} g d t+C\right] \\
& =e^{-b t / m}\left[\frac{m g}{b} e^{b t / m}+C^{\prime}\right] \\
& =\frac{m g}{b}+C^{\prime} e^{-b t / m} .
\end{align}
\]
To find the constant \(C^{\prime}\), we use the initial condition: if we release the body at time zero, then \(v=0\) when \(t=0\); Eq. \(\PageIndex{16}\) then becomes at \(t=0\)
\[0=\frac{m g}{b}+C^{\prime}\]
and so
\[C^{\prime}=-\frac{m g}{b}\]
Therefore, from Eq. \(\PageIndex{16}\), the solution is
\[v=\frac{m g}{b}-\frac{m g}{b} e^{-b t / m},\]
or
\[v=\frac{m g}{b}\left(1-e^{-b t / m}\right)\]
This is the solution we're after: it gives the falling object's velocity \(v\) at any time \(t\), assuming that it's dropped from rest at time \(t=0\).
Now let's examine what happens to the solution (Eq. \(\PageIndex{20}\)) as \(t \rightarrow \infty\). In this case, the exponential term approaches zero, and the falling object’s velocity approaches the limiting value
This is called the terminal velocity, and is a general feature of bodies falling through resistive fluids: at some point the resistive force balances the downward gravitational force, and the body stops accelerating and moves at a constant velocity. \({ }^{2}\) Sky divers experience this phenomenon: some time after jumping out of an airplane, a sky diver will reach a terminal velocity of roughly 100 miles per hour, and will not change speed further until the parachute is deployed.
\({ }^{2}\) A simpler way to arrive at Eq. \(\PageIndex{21}\) is to simply set the acceleration \(d v / d t=0\) in Eq. (19.5), which immediately gives \(v_{\infty}=\) \(m g / b\).