66.20: Motion of a Falling Body
( \newcommand{\kernel}{\mathrm{null}\,}\)
Given a body of mass m released from rest at time t=0 from a height h above the floor, we find the following results about the motion. Here the y axis points upward and has its origin at the floor, and so the acceleration due to gravity is −g.
- Position y at time t :
y(t)=h−12gt2
- Velocity v :
v(t)=−gtv(y)=−√2g(h−y)
- Fall time tf :
tf=√2hg
- Impact velocity vf :
vf=−√2gh
Total energy E :
E=mgh
- Kinetic energy K :
K(t)=12mg2t2K(y)=mg(h−y)
- Potential energy U :
U(t)=mgh−12mg2t2U(y)=mgy
- Time derivatives of kinetic energy:
dKdt=−mgv=mg2t=mg√2g(h−y)d2Kdt2=mg2
- Time derivatives of potential energy:
dUdt=mgv=−mg2t=−mg√2g(h−y)d2Udt2=−mg2
- Time averages:
⟨v⟩=−12√2gh⟨K⟩=13mgh⟨U⟩=23mgh
- Virial theorem (n=0) :
⟨K⟩=12⟨U⟩