Skip to main content
Library homepage
 
Physics LibreTexts

03: Two-Dimensional Kinematics

  • Page ID
    16933
    • Boundless
    • Boundless
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    mindtouch.page#thumbnail

    Prince George's Community College
    General Physics 1030
    PHYS 1030

    Prof. Neeharika Thakur

     

    1: Basis of Physics     2: Kinematics    3: Two Dimensional Kinematics    4: Laws of Motion     5: Circular Motion/Gravitation  6: Work & Energy   

    7: Momentum & Collisions    8: Static Equilibrium Elasticity & Torque      9: Rotational Kinematics     10: Fluids     11: Fluid Dynamics

     

    • 3.1: Motion in Two Dimensions
      An object moving with constant velocity must have a constant speed in a constant direction.
    • 3.2: Vectors
      Vectors are geometric representations of magnitude and direction and can be expressed as arrows in two or three dimensions.
    • 3.3: Projectile Motion
      Projectile motion is a form of motion where an object moves in parabolic path; the path that the object follows is called its trajectory.
    • 3.4: Multiple Velocities
      Relative velocities can be found by adding the velocity of the observed object to the velocity of the frame of reference it was measured in.


    This page titled 03: Two-Dimensional Kinematics is shared under a not declared license and was authored, remixed, and/or curated by Boundless.

    • Was this article helpful?