# 3: Direct Current Circuits

- Page ID
- 21514

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

- 3.1: Moving Charge
- We begin with some mathematical tools for dealing with moving charge, keeping in mind the observed physical law that charge is neither created nor destroyed.

- 3.2: Resistance and Energy Dissipation
- We now discard our assumption from electrostatics that conductors allow totally free (instantaneous) movement of electric charge, and take into account the effects of "electrical friction."

- 3.3: Networks of Batteries and Resistors
- We can employ analysis similar to what we used in static circuits to circuits that contain electric current passing through resistors, though it requires a twist to the notion of potential difference used in the static case.

- 3.4: Kirchhoff's Rules
- Not every conceivable circuit can be analyzed using the tools of the previous section. Here we learn some tools that can be used in more general cases.

- 3.5: RC Circuits
- Up to now, we have only considered the role of capacitors under static circumstances. We now incorporate them into our moving-charge networks.