5.12: Gravitational Potential of any Massive Body
- Page ID
- 8157
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)You might just want to look at Chapter 2 of Classical Mechanics (Moments of Inertia) before proceeding further with this chapter.
In figure \(\text{VIII.26}\) I draw a massive body whose centre of mass is \(\text{C}\), and an external point \(\text{P}\) at a distance \(R\) from \(\text{C}\). I draw a set of \(\text{C}xyz\) axes, such that \(\text{P}\) is on the \(z\)-axis, the coordinates of \(\text{P}\) being \((0, 0, z)\). I indicate an element \(δm\) of mass, distant \(r\) from \(\text{C}\) and \(l\) from \(\text{P}\). I’ll suppose that the density at \(δm\) is \(ρ\) and the volume of the mass element is \(δτ\), so that \(δm = ρδτ\).
\(\text{FIGURE V.26}\)
The potential at \(\text{P}\) is
\[ψ = -G \int \frac{dm}{l} = -G \int \frac{ρdτ}{l}. \label{5.12.1} \tag{5.12.1}\]
But \(l^2 = R^2 + r^2 - 2Rr \cos 2 θ\),
so \[ψ = -G \left[ \frac{1}{R} \int ρ dτ + \frac{1}{R^2} \int ρ r \cos θ d τ + \frac{1}{R^3} \int ρ r^2 P_2 (\cos θ) dτ + \frac{1}{R^4} \int ρ r^3 P_3 (\cos θ) d τ ... \right]. \label{5.12.2} \tag{5.12.2}\]
The integral is to be taken over the entire body, so that \(∫ ρdτ = M\), where \(M\) is the mass of the body. Also \(∫ ρr \cos θd τ = \int z dm\), which is zero, since \(\text{C}\) is the centre of mass. The third term is
\[\frac{1}{2R^3} \int ρ r^2 (3 \cos^2 θ - 1) dτ = \frac{1}{2R^3} \int ρ r^2 (2-3\sin^2 θ ) dτ . \label{5.12.3} \tag{5.12.3}\]
Now
\[\int 2 ρ r^2 d τ = \int 2r^2 d m = \int \left[ (y^2 + z^2) + (z^2 + x^2) + (x^2 + y^2) \right] dm = A + B + C\]
where \(A\), \(B\) and \(C\) are the second moments of inertia with respect to the axes \(\text{C}x\), \(\text{C}y\), \(\text{C}z\) respectively. But \(A + B + C\) is invariant with respect to rotation of axes, so it is also equal to \(A_0 + B_0 + C_0\), where \(A_0, \ B_0, \ C_0\) are the principal moments of inertia.
Lastly, \(\int ρ r^2 \sin^2 θ dτ\) is equal to \(C\), the moment of inertia with respect to the axis \(\text{C}z\).
Thus, if \(R\) is sufficiently larger than \(r\) so that we can neglect terms of order \((r/R)^3\) and higher, we obtain
\[ψ = - \frac{GM (2MR^2 + A_0 + B_0 + C_0 -3C)}{2R^3}. \label{5.12.4} \tag{5.12.4}\]
In the special case of an oblate symmetric top, in which \(A_0 = B_0 < C_0\), and the line \(\text{CP}\) makes an angle \(γ\) with the principal axis, we have
\[C = A_0 + (C_0 - A_0) \cos^2 γ = A_0 + (C_0 - A_0) Z^2/R^2, \label{5.12.5} \tag{5.12.5}\]
so that \[ψ = -\frac{G}{R} \left[ M + \frac{C_0 - A_0}{2R^2} \left( 1 - \frac{3Z^2}{R^2} \right) \right]. \label{5.12.6} \tag{5.12.6}\]
Now consider a uniform oblate spheroid of polar and equatorial diameters \(2c\) and \(2a\) respectively. It is easy to show that
\[C_0 = \frac{2}{5} Ma^2. \label{5.12.7} \tag{5.12.7}\]
Confirm Equation \ref{5.12.7}.
It is slightly less easy to show (Exercise: Show it.) that
\[A_0 = \frac{1}{5} M \left( a^2 + c^2 \right) . \label{5.12.8} \tag{5.12.8}\]
For a symmetric top, the integrals of the odd polynomials of Equation \(\ref{5.12.2}\) are zero, and the potential is generally written in the form
\[ψ = - \frac{GM}{R} \left[ 1 + \left( \frac{a}{R} \right)^2 J_2 P_2 (\cos γ) + \left( \frac{a}{R} \right) J_4 P_4 (\cos γ) ... \right] \label{5.12.9} \tag{5.12.9}\]
Here \(γ\) is the angle between \(\text{CP}\) and the principal axis. For a uniform oblate spheroid, \(J_2 = \frac{C_0 - A_0}{Mc^2}\). This result will be useful in a later chapter when we discuss precession.