13.8: Improved Triangle Ratios
- Page ID
- 8220
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Equation of motion of the orbiting body is
\[\ddot{\textbf{r}} = - \frac{GM}{r^3} \textbf{r} . \label{13.8.1} \tag{13.8.1}\]
If we recall Equation 13.4.2, this can be written
\[\ddot{\textbf{r}} = -k^2 \left( \frac{a^3}{r^3} \right) \textbf{r} . \label{13.8.2} \tag{13.8.2}\]
If we now agree to express \(r\) in units of \(a\) (i.e. in Astronomical Units of length (au)) and time in units of \(1/k\) \((1/k = 58.132 \ 440 \ 87\) mean solar days), this becomes merely
\[\ddot{\textbf{r}} = -\frac{1}{r^3} \textbf{r} . \label{13.8.3} \tag{13.8.3}\]
In these units, \(GM\) has the value \(1\).
Now write the \(x\)- and \(y\)- components of this Equation, where \((x , \ y)\) are heliocentric coordinates in the plane of the orbit (see sections 13.5 or 10.7).
\[\ddot{x} = -\frac{x}{r^3} \label{13.8.4} \tag{13.8.4}\]
and \[\ddot{y} = - \frac{y}{r^3}, \label{13.8.5} \tag{13.8.5}\]
where \[ x^2 + y^2 = r^2 . \label{13.8.6} \tag{13.8.6}\]
The areal speed is \(\frac{1}{2}h = \frac{1}{2} \sqrt{GMl}\) or, in these units, \(\frac{1}{2} \sqrt{l}\) where l is the semi latus rectum of the orbit in \(\text{au}\)
Let the planet be at \((x, \ y)\) at time \(t\). Then at time \(t + δt\) it will be at \((x + δx , y + δy)\), where
\[δx = \dot{x} δt + \frac{1}{2!} \ddot{x} (δt)^2 + \frac{1}{3!} \dddot{x} (δt)^3 + \frac{1}{4!}\ddddot{x} (δt)^4 + ... \label{13.8.7} \tag{13.8.7}\]
and similarly for y.
Now, starting from Equation \ref{13.8.4} we obtain
\[\dddot{x} = \frac{3x \dot{r}}{r^4} - \frac{\dot{x}}{r^3} \label{13.8.8} \tag{13.8.8}\]
and \[\ddot{\ddot{x}} = 3 \left( \frac{\dot{x}\dot{r}}{r^4} + \frac{x \ddot{r}}{r^4} - \frac{4x \dot{r}^2}{r^5} \right) - \frac{r^3 \ddot{x} - 3r^2 \dot{x} \dot{r}}{r^6} . \label{13.8.9} \tag{13.8.9}\]
(The comment in the paragraph preceding Equation 3.4.16 may be of help here, in case this is heavy-going.)
Now \(\ddot{x}\) and \(x\) are related by Equation \ref{13.8.4}, so that we can write Equation \ref{13.8.9} with no time derivatives of \(x\) higher than the first, and indeed it is not difficult, because Equation \ref{13.8.4} is just \(r^3 \ddot{x} = -x\). We obtain
and \[\ddot{\ddot{x}} = x \left( \frac{1}{r^6} - \frac{12 \dot{r}^2}{r^5} + \frac{3 \ddot{r}}{r^4} \right) + \frac{6 \dot{x} \dot{r}}{r^4} . \label{13.8.10} \tag{13.8.10}\]
In a similar fashion, because of the relation \ref{13.8.4}, all higher time derivatives of \(x\) can be written with no derivatives of \(x\) higher than the first, and a similar argument holds for \(y\).
Thus we can write Equation \ref{13.8.7} as
\[x + δx = Fx + G \dot{x} \label{13.8.11} \tag{13.8.11}\]
and similarly for \(y\):
\[y + δy = Fy + G \dot{y} , \label{13.8.12} \tag{13.8.12}\]
where \[F = 1 - \frac{1}{2r^3} (δt)^2 + \frac{\dot{r}}{2r^4} (δt)^3 + \frac{1}{24} \left( \frac{1}{r^6} - \frac{12 \dot{r}^2}{r^5} + \frac{3 \ddot{r}}{r^4} \right) (δt)^4 + ... \label{13.8.13} \tag{13.8.13}\]
and \[G = δt - \frac{1}{6r^3} (δt)^3 + \frac{\dot{r}}{4r^4} (δt)^4 + ... \label{13.8.14} \tag{13.8.14}\]
Now we are going to look at the triangle and sector areas. From figure \(\text{XIII.1}\) we can see that
\[\textbf{A}_1 = \frac{1}{2} \textbf{r}_2 \times \textbf{r}_3 , \ \textbf{A}_2 = \frac{1}{2} \textbf{r}_1 \times \textbf{r}_3 , \ \textbf{A}_3 = \frac{1}{2} \textbf{r}_1 \times \textbf{r}_2 . \label{13.8.15a,b,c} \tag{13.8.15a,b,c}\]
Also, angular momentum per unit mass is \(\textbf{r} \times \textbf{v}\) and Kepler’s second law tells us that areal speed is half the angular momentum per unit mass and that it is constant and equal to \(\frac{1}{2} \sqrt{l}\) (in the units that we are using), so that
\[\dot{\textbf{B}}_1 = \frac{1}{2} \textbf{r}_1 \times \dot{\textbf{r}}_1 = \frac{1}{2} \textbf{r}_2 \times \dot{\textbf{r}}_2 = \frac{1}{2} \textbf{r}_3 \times \dot{\textbf{r}}_3 .\label{13.8.16a,b,c} \tag{13.8.16a,b,c}\]
All four of these vectors are parallel and perpendicular to the plane of the orbit, to that their magnitudes are just equal to their \(z\)-components. From the usual formulas for the components of a vector product we have, then,
\[A_1 = \frac{1}{2}(x_2 y_3 - y_2 x_3 ) , \quad A_2 = \frac{1}{2} (x_1 y_3 - y_1 x_3 ) , \quad A_3 = \frac{1}{2} (x_1 y_2 - y_1 x_2 ) \label{13.8.17a,b,c} \tag{13.8.17a,b,c}\]
and
\[\frac{1}{2} \sqrt{l} = \frac{1}{2} (x_1 \dot{y}_1 - y_1 \dot{x}_1 ) = \frac{1}{2}(x_2 \dot{y}_2 - y_2 \dot{x}_2 ) = \frac{1}{2} (x_3 \dot{y}_3 - y_3 \dot{x}_3 ) . \label{13.8.18a,b,c} \tag{13.8.18a,b,c}\]
Now, start from the second observation \((x_2 , y_2)\) at instant \(t_2\). We shall try to predict the third observation, using Equations 13.8.11-14, in which \(x + δx\) is \(x_3\) and \(δt\) is \(t_3 − t_2\), which we are calling (see section 13.3) \(τ_1\). I shall make the subscripts for \(F\) and \(G\) the same as the subscripts for \(τ\). Thus the \(F\) and \(G\) that connect observations 2 and 3 will have subscript 1, just as we are using the notation \(τ_1\) for \(t_3 − t_2\).
Thus we have
\[x_2 = F_1 x_2 + G_1 \dot{x}_2 \label{13.8.19} \tag{13.8.19}\]
and \[y_3 = F_1 y_2 + G_1 \dot{y}_2 , \label{13.8.20} \tag{13.8.20}\]
where \[F_1 = 1 - \frac{1}{2r_2^3}τ_1^2 + \frac{\dot{r}_2}{2r_2^4} τ_1^3 + \frac{1}{24} \left( \frac{1}{r_2^6} - \frac{12 \dot{r}_2^2}{r_2^5} + \frac{3 \ddot{r}_2}{r_2^4} \right) τ_1^4 + ... \label{13.8.21} \tag{13.8.21}\]
and \[G_1 = τ_1 - \frac{1}{6r_2^3} τ_1^3 + \frac{\dot{r}_2}{4r_2^3} τ_1^4 + ... \quad . \label{13.8.22} \tag{13.8.22}\]
Similarly, the first observation is given by
\[x_1 = F_3 x_2 + G_3 \dot{x}_2 \label{13.8.23} \tag{13.8.23}\]
and \[y_1 = F_3 y_2 + G_3 \dot{y}_2 , \label{13.8.24} \tag{13.8.24}\]
where, by substitution of \(−τ_3\) for \(δt\),
\[F_3 = 1 - \frac{1}{2r_2^3} τ_3^2 - \frac{\dot{r}_2}{2r_2^4} τ_3^3 + \frac{1}{24} \left( \frac{1}{r_2^6} - \frac{12 \dot{r}_2^2}{r_2^5} + \frac{3\ddot{r}_2}{r_2^4} \right) τ_3^4 + ... \label{13.8.25} \tag{13.8.25}\]
and \[G_3 = -τ_3 + \frac{1}{6r_2^3} τ_3^3 + \frac{\dot{r}_2}{4r_2^4}τ_3^4 + ... \quad . \label{13.8.26} \tag{13.8.26}\]
From Equations 13.8.17,18,19,20,23,24, we soon find that
\[A_1 = \frac{1}{2} G_1 \sqrt{l} , \quad A_2 = \frac{1}{2} ( F_3 G_1 - F_1G_3 ) \sqrt{l} , \quad A_3 = -\frac{1}{2} G_3 \sqrt{l} . \label{13.8.27a,b,c} \tag{13.8.27a,b,c}\]
Now we do not yet know \(\dot{r}\) or \(\ddot{r}\), but we can take the expansions of \(F\) and \(G\) as far as \(τ^2\). We then obtain, correct to \(τ^3\) :
\[A_1 = \frac{1}{2} \sqrt{l} τ_1 \left( 1 - \frac{τ_1^2}{6_2^3} \right) , \label{13.8.28} \tag{13.8.28}\]
\[A_2 = \frac{1}{2} \sqrt{l} τ_2 \left( 1 - \frac{τ_1^2}{6r_2^3} \right) , \label{13.8.29} \tag{13,8.29}\]
and \[A_3 = \frac{1}{2} \sqrt{l} τ_3 \left( 1 - \frac{τ_3^2}{6r_2^3} \right) . \label{13.8.30} \tag{13.8.30}\]
Thus the triangle ratio \(a_1 = A_1/A_2\) is
\[a_1 = \frac{τ_1}{τ_2} \left( 1 - \frac{τ_1^2}{6r_2^3} \right) \left( 1 - \frac{τ_2^2}{6r_2^3} \right)^{-1} , \label{13.8.31} \tag{13.8.31}\]
which, to order \(τ^3\), is \[a_1 = \frac{τ_1}{τ_2} \left( 1 + \frac{(τ_2^2 - τ_1^2)}{6r_2^3} \right) , \label{13.8.32} \tag{13.8.32}\]
or, with \(τ_2 - τ_1 = τ_3\), \[a_1 = \frac{τ_1}{τ_2} \left( 1 + \frac{τ_3 (τ_2 + τ_1)}{6r_2^3} \right) . \label{13.8.33} \tag{13.8.33}\]
Similarly, \[a_3 = \frac{τ_3}{τ_2} \left( 1 + \frac{τ_1 (τ_2 + τ_3)}{6r_2^3} \right) . \label{13.8.34} \tag{13.8.34}\]
Further, with \(τ_1 /τ_2 = b_1\) and \(τ_3 /τ_2 = b_3\),
\[a_1 = b_1 + \frac{τ_1 τ_3}{6r_2^3} (1 + b_1) \quad \text{and} \quad a_3 = b_3 + \frac{τ_1 τ_3}{6r_2^3} (1 + b_3) . \label{13.8.35a,b} \tag{13.8.35a,b}\]
These will serve as better approximations for the triangle ratios. Be aware, however, that Equations 13.8.35a,b are only approximations, and do not give the exact values for \(a_1\) and \(a_3\).