13.8: Improved Triangle Ratios
( \newcommand{\kernel}{\mathrm{null}\,}\)
The Equation of motion of the orbiting body is
¨r=−GMr3r.
If we recall Equation 13.4.2, this can be written
¨r=−k2(a3r3)r.
If we now agree to express r in units of a (i.e. in Astronomical Units of length (au)) and time in units of 1/k (1/k=58.132 440 87 mean solar days), this becomes merely
¨r=−1r3r.
In these units, GM has the value 1.
Now write the x- and y- components of this Equation, where (x, y) are heliocentric coordinates in the plane of the orbit (see sections 13.5 or 10.7).
¨x=−xr3
and ¨y=−yr3,
where x2+y2=r2.
The areal speed is 12h=12√GMl or, in these units, 12√l where l is the semi latus rectum of the orbit in au
Let the planet be at (x, y) at time t. Then at time t+δt it will be at (x+δx,y+δy), where
δx=˙xδt+12!¨x(δt)2+13!x⃛
and similarly for y.
Now, starting from Equation \ref{13.8.4} we obtain
\dddot{x} = \frac{3x \dot{r}}{r^4} - \frac{\dot{x}}{r^3} \label{13.8.8} \tag{13.8.8}
and \ddot{\ddot{x}} = 3 \left( \frac{\dot{x}\dot{r}}{r^4} + \frac{x \ddot{r}}{r^4} - \frac{4x \dot{r}^2}{r^5} \right) - \frac{r^3 \ddot{x} - 3r^2 \dot{x} \dot{r}}{r^6} . \label{13.8.9} \tag{13.8.9}
(The comment in the paragraph preceding Equation 3.4.16 may be of help here, in case this is heavy-going.)
Now \ddot{x} and x are related by Equation \ref{13.8.4}, so that we can write Equation \ref{13.8.9} with no time derivatives of x higher than the first, and indeed it is not difficult, because Equation \ref{13.8.4} is just r^3 \ddot{x} = -x. We obtain
and \ddot{\ddot{x}} = x \left( \frac{1}{r^6} - \frac{12 \dot{r}^2}{r^5} + \frac{3 \ddot{r}}{r^4} \right) + \frac{6 \dot{x} \dot{r}}{r^4} . \label{13.8.10} \tag{13.8.10}
In a similar fashion, because of the relation \ref{13.8.4}, all higher time derivatives of x can be written with no derivatives of x higher than the first, and a similar argument holds for y.
Thus we can write Equation \ref{13.8.7} as
x + δx = Fx + G \dot{x} \label{13.8.11} \tag{13.8.11}
and similarly for y:
y + δy = Fy + G \dot{y} , \label{13.8.12} \tag{13.8.12}
where F = 1 - \frac{1}{2r^3} (δt)^2 + \frac{\dot{r}}{2r^4} (δt)^3 + \frac{1}{24} \left( \frac{1}{r^6} - \frac{12 \dot{r}^2}{r^5} + \frac{3 \ddot{r}}{r^4} \right) (δt)^4 + ... \label{13.8.13} \tag{13.8.13}
and G = δt - \frac{1}{6r^3} (δt)^3 + \frac{\dot{r}}{4r^4} (δt)^4 + ... \label{13.8.14} \tag{13.8.14}
Now we are going to look at the triangle and sector areas. From figure \text{XIII.1} we can see that
\textbf{A}_1 = \frac{1}{2} \textbf{r}_2 \times \textbf{r}_3 , \ \textbf{A}_2 = \frac{1}{2} \textbf{r}_1 \times \textbf{r}_3 , \ \textbf{A}_3 = \frac{1}{2} \textbf{r}_1 \times \textbf{r}_2 . \label{13.8.15a,b,c} \tag{13.8.15a,b,c}
Also, angular momentum per unit mass is \textbf{r} \times \textbf{v} and Kepler’s second law tells us that areal speed is half the angular momentum per unit mass and that it is constant and equal to \frac{1}{2} \sqrt{l} (in the units that we are using), so that
\dot{\textbf{B}}_1 = \frac{1}{2} \textbf{r}_1 \times \dot{\textbf{r}}_1 = \frac{1}{2} \textbf{r}_2 \times \dot{\textbf{r}}_2 = \frac{1}{2} \textbf{r}_3 \times \dot{\textbf{r}}_3 .\label{13.8.16a,b,c} \tag{13.8.16a,b,c}
All four of these vectors are parallel and perpendicular to the plane of the orbit, to that their magnitudes are just equal to their z-components. From the usual formulas for the components of a vector product we have, then,
A_1 = \frac{1}{2}(x_2 y_3 - y_2 x_3 ) , \quad A_2 = \frac{1}{2} (x_1 y_3 - y_1 x_3 ) , \quad A_3 = \frac{1}{2} (x_1 y_2 - y_1 x_2 ) \label{13.8.17a,b,c} \tag{13.8.17a,b,c}
and
\frac{1}{2} \sqrt{l} = \frac{1}{2} (x_1 \dot{y}_1 - y_1 \dot{x}_1 ) = \frac{1}{2}(x_2 \dot{y}_2 - y_2 \dot{x}_2 ) = \frac{1}{2} (x_3 \dot{y}_3 - y_3 \dot{x}_3 ) . \label{13.8.18a,b,c} \tag{13.8.18a,b,c}
Now, start from the second observation (x_2 , y_2) at instant t_2. We shall try to predict the third observation, using Equations 13.8.11-14, in which x + δx is x_3 and δt is t_3 − t_2, which we are calling (see section 13.3) τ_1. I shall make the subscripts for F and G the same as the subscripts for τ. Thus the F and G that connect observations 2 and 3 will have subscript 1, just as we are using the notation τ_1 for t_3 − t_2.
Thus we have
x_2 = F_1 x_2 + G_1 \dot{x}_2 \label{13.8.19} \tag{13.8.19}
and y_3 = F_1 y_2 + G_1 \dot{y}_2 , \label{13.8.20} \tag{13.8.20}
where F_1 = 1 - \frac{1}{2r_2^3}τ_1^2 + \frac{\dot{r}_2}{2r_2^4} τ_1^3 + \frac{1}{24} \left( \frac{1}{r_2^6} - \frac{12 \dot{r}_2^2}{r_2^5} + \frac{3 \ddot{r}_2}{r_2^4} \right) τ_1^4 + ... \label{13.8.21} \tag{13.8.21}
and G_1 = τ_1 - \frac{1}{6r_2^3} τ_1^3 + \frac{\dot{r}_2}{4r_2^3} τ_1^4 + ... \quad . \label{13.8.22} \tag{13.8.22}
Similarly, the first observation is given by
x_1 = F_3 x_2 + G_3 \dot{x}_2 \label{13.8.23} \tag{13.8.23}
and y_1 = F_3 y_2 + G_3 \dot{y}_2 , \label{13.8.24} \tag{13.8.24}
where, by substitution of −τ_3 for δt,
F_3 = 1 - \frac{1}{2r_2^3} τ_3^2 - \frac{\dot{r}_2}{2r_2^4} τ_3^3 + \frac{1}{24} \left( \frac{1}{r_2^6} - \frac{12 \dot{r}_2^2}{r_2^5} + \frac{3\ddot{r}_2}{r_2^4} \right) τ_3^4 + ... \label{13.8.25} \tag{13.8.25}
and G_3 = -τ_3 + \frac{1}{6r_2^3} τ_3^3 + \frac{\dot{r}_2}{4r_2^4}τ_3^4 + ... \quad . \label{13.8.26} \tag{13.8.26}
From Equations 13.8.17,18,19,20,23,24, we soon find that
A_1 = \frac{1}{2} G_1 \sqrt{l} , \quad A_2 = \frac{1}{2} ( F_3 G_1 - F_1G_3 ) \sqrt{l} , \quad A_3 = -\frac{1}{2} G_3 \sqrt{l} . \label{13.8.27a,b,c} \tag{13.8.27a,b,c}
Now we do not yet know \dot{r} or \ddot{r}, but we can take the expansions of F and G as far as τ^2. We then obtain, correct to τ^3 :
A_1 = \frac{1}{2} \sqrt{l} τ_1 \left( 1 - \frac{τ_1^2}{6_2^3} \right) , \label{13.8.28} \tag{13.8.28}
A_2 = \frac{1}{2} \sqrt{l} τ_2 \left( 1 - \frac{τ_1^2}{6r_2^3} \right) , \label{13.8.29} \tag{13,8.29}
and A_3 = \frac{1}{2} \sqrt{l} τ_3 \left( 1 - \frac{τ_3^2}{6r_2^3} \right) . \label{13.8.30} \tag{13.8.30}
Thus the triangle ratio a_1 = A_1/A_2 is
a_1 = \frac{τ_1}{τ_2} \left( 1 - \frac{τ_1^2}{6r_2^3} \right) \left( 1 - \frac{τ_2^2}{6r_2^3} \right)^{-1} , \label{13.8.31} \tag{13.8.31}
which, to order τ^3, is a_1 = \frac{τ_1}{τ_2} \left( 1 + \frac{(τ_2^2 - τ_1^2)}{6r_2^3} \right) , \label{13.8.32} \tag{13.8.32}
or, with τ_2 - τ_1 = τ_3, a_1 = \frac{τ_1}{τ_2} \left( 1 + \frac{τ_3 (τ_2 + τ_1)}{6r_2^3} \right) . \label{13.8.33} \tag{13.8.33}
Similarly, a_3 = \frac{τ_3}{τ_2} \left( 1 + \frac{τ_1 (τ_2 + τ_3)}{6r_2^3} \right) . \label{13.8.34} \tag{13.8.34}
Further, with τ_1 /τ_2 = b_1 and τ_3 /τ_2 = b_3,
a_1 = b_1 + \frac{τ_1 τ_3}{6r_2^3} (1 + b_1) \quad \text{and} \quad a_3 = b_3 + \frac{τ_1 τ_3}{6r_2^3} (1 + b_3) . \label{13.8.35a,b} \tag{13.8.35a,b}
These will serve as better approximations for the triangle ratios. Be aware, however, that Equations 13.8.35a,b are only approximations, and do not give the exact values for a_1 and a_3.