Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

19.3: Torque and the Time Derivative of Angular Momentum about a Point for a Particle

( \newcommand{\kernel}{\mathrm{null}\,}\)

We will now show that the torque about a point S is equal to the time derivative of the angular momentum about S,

\vec{\tau}_{S}=\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t} \nonumber

Take the time derivative of the angular momentum about S,

\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t}=\frac{d}{d t}\left(\overrightarrow{\mathbf{r}}_{S} \times \overrightarrow{\mathbf{p}}\right) \nonumber

In this equation we are taking the time derivative of a vector product of two vectors. There are two important facts that will help us simplify this expression. First, the time derivative of the vector product of two vectors satisfies the product rule,

\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t}=\frac{d}{d t}\left(\overrightarrow{\mathbf{r}}_{S} \times \overrightarrow{\mathbf{p}}\right)=\left(\left(\frac{d \overrightarrow{\mathbf{r}}_{S}}{d t}_{S}\right) \times \overrightarrow{\mathbf{p}}\right)+\left(\overrightarrow{\mathbf{r}}_{S} \times\left(\frac{d \overrightarrow{\mathbf{p}}}{d t}\right)\right) \nonumber

Second, the first term on the right hand side vanishes,

\frac{d \mathbf{r}_{S}}{d t} \times \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{v}} \times m \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}} \nonumber

The rate of angular momentum change about the point S is then

\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t}=\overrightarrow{\mathbf{r}}_{S} \times \frac{d \overrightarrow{\mathbf{p}}}{d t} \nonumber

From Newton’s Second Law, the force on the particle is equal to the derivative of the linear momentum,

\overrightarrow{\mathbf{F}}=\frac{d \overrightarrow{\mathbf{p}}}{d t} \nonumber

Therefore the rate of change in time of angular momentum about the point S is

\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t}=\overrightarrow{\mathbf{r}}_{S} \times \overrightarrow{\mathbf{F}} \label{19.3.7}

Recall that the torque about the point S due to the force \overrightarrow{\mathbf{F}} acting on the particle is

\vec{\tau}_{S}=\overrightarrow{\mathbf{r}}_{S} \times \overrightarrow{\mathbf{F}} \label{19.3.8}

Combining the expressions in Equation \ref{19.3.7} and \ref{19.3.8}, it is readily seen that the torque about the point S is equal to the rate of change of angular momentum about the point S,

\vec{\tau}_{S}=\frac{d \overrightarrow{\mathbf{L}}_{S}}{d t} \nonumber


This page titled 19.3: Torque and the Time Derivative of Angular Momentum about a Point for a Particle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Peter Dourmashkin (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?