2.4: Other Conservation Laws
- Page ID
- 34748
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Looking at the Lagrange equation (19), we immediately see that if \(L \equiv T-U\) is independent of some generalized coordinate \(q_{j}, \partial L / \partial q_{j}=0,{ }^{15}\) then the corresponding generalized momentum is an integral of motion: 16 \[p_{j} \equiv \frac{\partial L}{\partial \dot{q}_{j}}=\text { const. }\] For example, for a 1D particle with the Lagrangian (21), the momentum \(p_{x}\) is conserved if the potential energy is constant (and hence the \(x\)-component of force is zero) - of course. As a less obvious example, let us consider a 2D motion of a particle in the field of central forces. If we use polar coordinates \(r\) and \(\varphi\) in the role of generalized coordinates, the Lagrangian function, \({ }^{17}\) \[L \equiv T-U=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)-U(r),\] is independent of \(\varphi\) and hence the corresponding generalized momentum, \[p_{\varphi} \equiv \frac{\partial L}{\partial \dot{\varphi}}=m r^{2} \dot{\varphi},\] is conserved. This is just a particular (2D) case of the angular momentum conservation - see Eq. (1.24). Indeed, for the 2 \(\mathrm{D}\) motion within the \([x, y]\) plane, the angular momentum vector, \[\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}=\left|\begin{array}{ccc} \mathbf{n}_{x} & \mathbf{n}_{y} & \mathbf{n}_{z} \\ x & y & z \\ m \dot{x} & m \dot{y} & m \dot{z} \end{array}\right|,\] has only one component different from zero, namely the component normal to the motion plane: \[L_{z}=x(m \dot{y})-y(m \dot{x}) \text {. }\] Differentiating the well-known relations between the polar and Cartesian coordinates, \[x=r \cos \varphi, \quad y=r \sin \varphi,\] over time, and plugging the result into Eq. (52), we see that \[L_{z}=m r^{2} \dot{\varphi} \equiv p_{\varphi} .\] Thus the Lagrangian formalism provides a powerful way of searching for non-evident integrals of motion. On the other hand, if such a conserved quantity is evident or known a priori, it is helpful for the selection of the most appropriate generalized coordinates, giving the simplest Lagrange equations. For example, in the last problem, if we knew in advance that \(p_{\varphi}\) had to be conserved, this could provide a motivation for using the angle \(\varphi\) as one of generalized coordinates.
\({ }^{16}\) This fact may be considered a particular case of a more general mathematical statement called the Noether theorem - named after its author, Emmy Nöther, sometimes called the "greatest woman mathematician ever lived". Unfortunately, because of time/space restrictions, for its discussion I have to refer the interested reader elsewhere - for example to Sec. \(13.7\) in H. Goldstein et al., Classical Mechanics, \(3^{\text {rd }}\) ed. Addison Wesley, 2002
\({ }^{17}\) Note that here \(\dot{r}^{2}\) is the square of the scalar derivative \(\dot{r}\), rather than the square of the vector \(\dot{\mathbf{r}}=\mathbf{v}\).