Skip to main content
Physics LibreTexts

19.4: Finding the Eigenvectors

  • Page ID
    29522
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Now let’s look at the eigenvectors, we’ll start with those of \(P\).Let’s call the eigenvalue \(\lambda\)

    Then for an eigenstate of the shift operator, the shifted vector must be just a multiple of the original vector:

    \begin{equation}\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 \\1 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{c}A_{1} \\A_{2} \\A_{3} \\A_{4}\end{array}\right)=\left(\begin{array}{c}A_{2} \\A_{3} \\A_{4} \\A_{1}\end{array}\right)=\lambda\left(\begin{array}{c}A_{1} \\A_{2} \\A_{3} \\
    A_{4}\end{array}\right)\end{equation}

    Reading off the element by element equivalence of the two vectors,

    \begin{equation}
    A_{2}=\lambda A_{1}, \quad A_{3}=\lambda A_{2}, \quad A_{4}=\lambda A_{3}, \quad A_{1}=\lambda A_{4}
    \end{equation}

    The first three equalities tell us the eigenvector has the form \(\left(1, \lambda, \lambda^{2}, \lambda^{3}\right)^{T}\), the last tells us that \(\lambda^{4}=1\).

    From our earlier discussion of circulant matrices, writing the smallest phase nontrivial \(N^{\text {th }}\) root of unity as \(\omega=e^{2 \pi i / N}\), the roots of the equation \(\lambda^{N}=1\) are just this basic root raised to N different powers: the roots are \(1, \omega, \omega^{2}, \omega^{3}, \ldots, \omega^{N-1}\)

    This establishes that the eigenvectors of \(P\) have the form

    \begin{equation}
    \left(1, \omega^{j},\left(\omega^{j}\right)^{2},\left(\omega^{j}\right)^{3}, \ldots,\left(\omega^{j}\right)^{N-1}\right)^{T}
    \end{equation}

    where \(j=0,1,2,3, \ldots, N-1\) with corresponding eigenvalue the basic root raised to the \(j^{\text {th }} \text { power, } \omega^{j}=e^{2 \pi i j / N}\). Try it out for 3×3: the eigenvalues are given by

    \begin{equation}
    \left|\begin{array}{ccc}
    -\lambda & 1 & 0 \\
    0 & -\lambda & 1 \\
    1 & 0 & -\lambda
    \end{array}\right|=0, \quad \lambda^{3}=1, \quad \lambda=1, \omega, \omega^{2} ; \quad \omega^{3}=1
    \end{equation}

    The corresponding eigenvectors are found to be

    \begin{equation}
    \left(\begin{array}{l}
    1 \\
    1 \\
    1
    \end{array}\right), \quad\left(\begin{array}{c}
    1 \\
    \omega \\
    \omega^{2}
    \end{array}\right), \quad\left(\begin{array}{c}
    1 \\
    \omega^{2} \\
    \omega
    \end{array}\right)
    \end{equation}

    For the \(N×N\) case, there are \(N\) different, linearly independent, vectors of this form, so this is a complete set of eigenvectors of \(P\).

    They are also, of course, eigenvectors of \(\begin{equation}
    P^{2}, P^{3} \text { all } N-1 \text { powers of } P
    \end{equation}\) and therefore of all the circulant matrices! This means that all \(N×N\)circulant matrices commute.


    This page titled 19.4: Finding the Eigenvectors is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?