Skip to main content
Physics LibreTexts

19.6: Allowed Wavenumbers from Boundary Conditions

  • Page ID
    29524
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The usual way of representing a wave on a line in physics is to have displacement proportional to \(e^{i k x}\), and \(k\) is called the wavenumber. For our discretized system, the displacement parameter for the \(n^{\text {th }}\) atom, at position na, would therefore be proportional to \(e^{i k n a}\).

    But we know this is an eigenvector of a circulant, so we must have \(e^{i N k a}=1\), and the allowed values of \(k\) are

    \[k_{n}=\frac{2 \pi}{N a} n=\frac{2 \pi}{L} n\]

    with \(n\) an integer.

    The circulant structure of the matrix has determined the eigenvectors, but not the eigenvalues \(\omega_{n}\)


    This page titled 19.6: Allowed Wavenumbers from Boundary Conditions is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?