Skip to main content
Physics LibreTexts

30.6: Ball Rolling on Inclined Rotating Plane

  • Page ID
    30706
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Plane tilted at an angle of alpha to the z axis. i unit vector is perpendicular to the plane and j unit vector is along the plane
    Figure \(\PageIndex{1}\)

    We’ll take unit vectors \(\begin{equation}\widehat{\vec{z}} \text { pointing vertically up, } \widehat{\vec{i}}\end{equation}\) perpendicularly up from the plane, the angle between these two unit vectors being α. (We will need a set of orthogonal unit vectors \(\widehat{\vec{i}}, \widehat{\vec{j}}, \widehat{\vec{k}}\), not fixed in the plane, but appropriately oriented, with \(\widehat{\vec{k}}\) horizontal.) The vector to the center of the sphere (radius \(a\), mass \(m\) ) from an origin on the axis of rotation, at a point a above the plane, is \(\vec{r}\). The contact reaction force of the plane on the sphere is \(\vec{R}\).

    The equations of motion are:

    \begin{equation}
    m \ddot{\vec{r}}=\vec{R}-m g \widehat{\vec{z}}, \quad I \dot{\vec{\Omega}}=-a \widehat{\vec{i}} \times \vec{R}
    \end{equation}

    and the equation of rolling contact is \(\dot{\vec{r}} - a \vec{\Omega} \times \widehat{\vec{i}}=\widehat{\omega i} \times \vec{r}\).

    First, we eliminate \(\vec{R}\) from the equations of motion to give

    \begin{equation}
    \dot{\vec{\Omega}}=(a m / I)(\ddot{\vec{r}}+g \widehat{\vec{z}}) \times \widehat{\vec{i}}
    \end{equation}

    Note that \(\dot{\vec{\Omega}} \cdot \widehat{\vec{i}}=0\), so the spin in the direction normal to the plane is constant, \(\vec{\Omega} \cdot \widehat{\vec{i}}=n\) say. (Both forces on the sphere have zero torque about this axis.)

    Integrating,

    \begin{equation}
    \vec{\Omega}+\text { const. }=(m a / I)(\dot{\vec{r}}+g t\widehat{\vec{z}}) \times \widehat{\vec{i}}
    \end{equation}

    Now eliminate \(\vec{\Omega}\) by multiplying both sides by \(\times \vec{i}\) and using the equation of rolling contact

    \begin{equation}
    \dot{\vec{r}}-a \vec{\Omega} \times \widehat{\vec{i}}=\omega \widehat{\vec{i}} \times \vec{r}
    \end{equation}

    to find:

    \begin{equation}
    \left(m a^{2} / I\right)[(\dot{\vec{r}}+g t \widehat{\vec{z}}) \times \widehat{\vec{i}}] \times \widehat{\vec{i}}=a \vec{\Omega} \times \widehat{\vec{i}}+\text { const. }=\dot{\vec{r}}-\omega \widehat{\vec{i}} \times \vec{r}+\text { const. }
    \end{equation}

    then using \(\begin{equation}
    (\dot{\vec{r}} \times \widehat{\vec{i}}) \times \widehat{\vec{i}}=-\dot{\vec{r}}, \; (\widehat{\vec{z}} \times \widehat{\vec{i}}) \times \widehat{\vec{i}}=-\widehat{\vec{j}}
    \end{equation}\), we find

    \begin{equation}
    \dot{\vec{r}}\left(1+m a^{2} / I\right)+\left(m a^{2} / I\right) g t \widehat{\vec{j}} \sin \alpha+\text { const. }=\omega \widehat{vec{i}} \times \vec{r}
    \end{equation}

    The constant is fixed by the initial position \(\vec{r}_{0}\), giving finally

    \begin{equation}
    \dot{\vec{r}}=\dfrac{\omega}{1+m a^{2} / I} \widehat{\vec{i}} \times\left[\left(\vec{r}-\vec{r}_{0}\right)+\dfrac{m a^{2} / I}{\omega} g t \widehat{\vec{k}} \sin \alpha\right]
    \end{equation}

    The first term in the square brackets would give the same circular motion we found for the horizontal rotating plane, the second term adds a steady motion of the center of this circle, in a horizontal direction (not down the plane!) at constant speed \(\left(m a^{2} / I \omega\right) g \sin \alpha\).

    (This is identical to the motion of a charged particle in crossed electric and magnetic fields.)

    Bottom line: the intuitive notion that a ball rolling on a rotating inclined turntable would tend to roll downhill is wrong! Recall that for a particle circling in a magnetic field, if an electric field is added perpendicular to the magnetic field, the particle moves in a cycloid at the same average electrical potential—it has no net movement in the direction of the electric field , only perpendicular to it. Our rolling ball follows an identical cycloidal path—keeping the same average gravitational potential.


    This page titled 30.6: Ball Rolling on Inclined Rotating Plane is shared under a not declared license and was authored, remixed, and/or curated by Michael Fowler.

    • Was this article helpful?