Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Physics LibreTexts

7.6: Kinetic Energy in Generalized Coordinates

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

Application of Noether’s theorem to the conservation of energy requires the kinetic energy to be expressed in generalized coordinates. In terms of fixed rectangular coordinates, the kinetic energy for N bodies, each having three degrees of freedom, is expressed as

T=\frac{1}{2}\sum_{\alpha =1}^{N}\sum_{i=1}^{3}m_{\alpha }\dot{x}_{\alpha ,i}^{2}\label{7.17}

These can be expressed in terms of generalized coordinates as x_{\alpha ,i}=x_{\alpha ,i}(q_{j},t) and in terms of generalized velocities

\dot{x}_{\alpha ,i}=\sum_{j=1}^{s}\frac{\partial x_{\alpha ,i}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial x_{\alpha ,i}}{\partial t} Taking the square of \dot{x}_{\alpha ,i} and inserting into the kinetic energy relation gives

T(\mathbf{q},\mathbf{\dot{q}},t)=\sum_{\alpha }\sum_{i,j,k}\frac{1}{2} m_{\alpha }\frac{\partial x_{\alpha ,i}}{\partial q_{j}}\frac{\partial x_{\alpha ,i}}{\partial q_{k}}\dot{q}_{j}\dot{q}_{k}+\sum_{\alpha }\sum_{i,j}m_{\alpha }\frac{\partial x_{\alpha ,i}}{\partial q_{j}}\frac{ \partial x_{\alpha ,i}}{\partial t}\dot{q}_{j}+\sum_{\alpha }\sum_{i}\frac{1 }{2}m_{\alpha }\left( \frac{\partial x_{\alpha ,i}}{\partial t}\right) ^{2} This can be abbreviated as

T(\mathbf{q},\mathbf{\dot{q}},t)=T_{2}(\mathbf{q},\mathbf{\dot{q}},t)+T_{1}( \mathbf{q},\mathbf{\dot{q}},t)+T_{0}(\mathbf{q},t)

where

\begin{align} \label{7.21} T_{2}(\mathbf{q},\mathbf{\dot{q}},t) &=&\sum_{\alpha }\sum_{i,j,k}\frac{1}{2} m_{\alpha }\frac{\partial x_{\alpha ,i}}{\partial q_{j}}\frac{\partial x_{\alpha ,i}}{\partial q_{k}}\dot{q}_{j}\dot{q}_{k}=\sum_{j,k}a_{jk}\dot{q} _{j}\dot{q}_{k} \\ T_{1}(\mathbf{q},\mathbf{\dot{q}},t) &=&\sum_{\alpha }\sum_{i,j}m_{\alpha } \frac{\partial x_{\alpha ,i}}{\partial q_{j}}\frac{\partial x_{\alpha ,i}}{ \partial t}\dot{q}_{j}=\sum_{j,k}b_{j}\dot{q}_{j} \\ T_{0}(\mathbf{q},t) &=&\sum_{\alpha }\sum_{i}\frac{1}{2}m_{\alpha }\left( \frac{\partial x_{\alpha ,i}}{\partial t}\right) ^{2}\end{align}

where a_{jk}\equiv \sum_{\alpha =1}^{n}\sum_{i,=1}^{3}\frac{1}{2}m_{\alpha }\frac{ \partial x_{\alpha ,i}}{\partial q_{j}}\frac{\partial x_{\alpha ,i}}{ \partial q_{k}}

When the transformed system is scleronomic, time does not appear explicitly in the transformation equations to generalized coordinates since \frac{\partial x_{\alpha ,i}}{\partial t}=0. Then T_{1}=T_{0}=0, and the kinetic energy reduces to a homogeneous quadratic function of the generalized velocities T(\mathbf{q},\mathbf{ \dot{q}},t)=T_{2}(\mathbf{q},\mathbf{\dot{q}},t) \label{7.25}

A useful relation can be derived by taking the differential of Equation \ref{7.21} with respect to \dot{q}_{l}. That is

\frac{\partial T_{2}(\mathbf{q},\mathbf{\dot{q}},t)}{\partial \dot{q}_{l}} =\sum_{k}a_{lk}\dot{q}_{k}+\sum_{j}a_{jl}\dot{q}_{j}

Multiply this by \dot{q}_{l} and sum over l gives

\sum_{l}\dot{q}_{l}\frac{\partial T_{2}(\mathbf{q},\mathbf{\dot{q}},t)}{ \partial \dot{q}_{l}}=\sum_{k,l}a_{lk}\dot{q}_{k}\dot{q}_{l}+\sum_{j,l}a_{jl} \dot{q}_{j}\dot{q}_{l}=2\sum_{j,k}a_{lk}\dot{q}_{k}\dot{q}_{l}=2T_{2}

Similarly, the products of the generalized velocities \dot{q}, with the corresponding derivatives of T_{1} and T_{0} give \begin{align} \label{7.27} \sum_{l}\dot{q}_{l}\frac{\partial T_{2}}{\partial \dot{q}_{l}} &=&2T_{2} \\ \sum_{l}\dot{q}_{l}\frac{\partial T_{1}(\mathbf{q},\mathbf{\dot{q}},t)}{ \partial \dot{q}_{l}} &=&T_{1}(\mathbf{q},\mathbf{\dot{q}},t) \\ \sum_{l}\dot{q}_{l}\frac{\partial T_{0}(\mathbf{q},t)}{\partial \dot{q}_{l}} &=&0\end{align}

Equation \ref{7.25} gives that T=T_{2} when the transformed system is scleronomic, i.e. \frac{\partial x_{\alpha ,i}}{\partial t}=0, and then the kinetic energy is a quadratic function of the generalized velocities \dot{q}_{j}. Using the definition of the generalized momentum equation (7.2.3), assuming T=T_{2}, and that the potential U is velocity independent, gives that

p_{l}\equiv \frac{\partial L}{\partial \dot{q}_{l}}=\frac{\partial T}{\partial \dot{q} _{l}}-\frac{\partial U}{\partial \dot{q}_{l}}=\frac{\partial T_{2}}{\partial \dot{q}_{l}}

Then Equation \ref{7.27} reduces to the useful relation that

T_{2}=\frac{1}{2}\sum_{l}\dot{q}_{l}p_{l}=\frac{1}{2}\mathbf{\dot{q}\cdot p}

where, for compactness, the summation is abbreviated as a scalar product.


This page titled 7.6: Kinetic Energy in Generalized Coordinates is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?