Skip to main content
Library homepage
 
Physics LibreTexts

7.5: Cyclic Coordinates

  • Page ID
    9605
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Translational and rotational invariance occurs when a system has a cyclic coordinate \(q_{k}.\) A cyclic coordinate is one that does not explicitly appear in the Lagrangian. The term cyclic is a natural name when one has cylindrical or spherical symmetry. In Hamiltonian mechanics a cyclic coordinate often is called an ignorable coordinate . By virtue of Lagrange’s equations

    \[\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{k}}-\frac{\partial L}{ \partial q_{k}}=0\]

    then a cyclic coordinate \(q_{k},\) is one for which \(\frac{\partial L}{ \partial q_{k}}=0\). Thus

    \[\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_{k}}=\dot{p}_{k}=0\]

    that is, \(\ p_{k}\) is a constant of motion if the conjugate coordinate \(q_{k}\) is cyclic. This is just Noether’s Theorem.


    This page titled 7.5: Cyclic Coordinates is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.