Skip to main content
Physics LibreTexts

13.12: Kinetic Energy of Rotating Rigid Body

  • Page ID
    14184
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    An important observable is the kinetic energy of rotation of a rigid body. Consider a rigid body composed of \(N\) particles of mass \(m_{\alpha}\) where \({\alpha} = 1, 2, 3, \dots N\). If the body rotates with an instantaneous angular velocity \(\boldsymbol{\omega}\) about some fixed point, with respect to the body coordinate system, and this point has an instantaneous translational velocity \(\mathbf{V}\) with respect to the fixed (inertial) coordinate system, see Figure \(13.3.1\), then the instantaneous velocity \(\mathbf{v}_{\alpha}\) of the \({\alpha}^{th}\) particle in the fixed frame of reference is given by

    \[\mathbf{v}_{\alpha} = \mathbf{V} + \mathbf{v}^{\prime\prime}_{\alpha} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} \label{13.56}\]

    However, for a rigid body, the velocity of a body-fixed point with respect to the body is zero, that is \(\mathbf{v}^{\prime\prime}_{\alpha} = 0\), thus

    \[\mathbf{v}_{\alpha} = \mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} \]

    The total kinetic energy is given by

    \[\begin{align} T & = & \sum^N_{\alpha} \frac{1}{2} m_{\alpha} \mathbf{v}_{\alpha} \cdot \mathbf{v}_{\alpha} = \sum^N_{\alpha} \frac{1}{2} m_{\alpha} (\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \cdot (\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \notag \\ & = & \frac{1}{2} \sum^N_{\alpha} m_{\alpha} V^2 + \sum^N_i m_{\alpha} \mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} + \frac{1}{2} \sum^{N}_{\alpha} m_{\alpha} (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \cdot (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \label{13.58} \end{align} \]

    This is a general expression for the kinetic energy that is valid for any choice of the origin from which the body-fixed vectors \(\mathbf{r}^{\prime}_{\alpha}\) are measured. However, if the origin is chosen to be the center of mass, then, and only then, the middle term cancels. That is, since \(\mathbf{V} \cdot \boldsymbol{\omega}\) is independent of the specific particle, then

    \[\sum^N_{\alpha} m_{\alpha} \mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} = \mathbf{V} \cdot \boldsymbol{\omega} \times \left( \sum^{N}_{\alpha} m_{\alpha} \mathbf{r}^{\prime}_{\alpha} \right)\]

    But the definition of the center of mass is

    \[\sum_{\alpha} m_{\alpha} \mathbf{r}^{\prime} = M\mathbf{R}\]

    and \(\mathbf{R} = 0\) in the body-fixed frame if the selected point in the body is the center of mass. Thus, when using the center of mass frame, the middle term of Equation \ref{13.58} is zero. Therefore, for the center of mass frame, the kinetic energy separates into two terms in the body-fixed frame

    \[T = T_{trans} + T_{rot} \label{13.61}\]

    where

    \[T_{trans} = \frac{1}{2} \sum^{N}_{\alpha} m_{\alpha} V^2\]

    \[T_{rot} = \frac{1}{2} \sum^N_{\alpha} m_i (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \cdot (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \notag\]

    The vector identity

    \[(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{A} \times \mathbf{B}) = A^2B^2 − (\mathbf{A} \cdot \mathbf{B})^2 \]

    can be used to simplify \(T_{rot}\)

    \[T_{rot} = \frac{1}{2} \sum^N_{\alpha} m_{\alpha} \left[ \omega^2 r^{\prime 2}_{\alpha} − (\boldsymbol{\omega} \cdot \mathbf{r}^{\prime}_{\alpha})^2 \right] \]

    The rotational kinetic energy \(T_{rot}\) can be expressed in terms of components of \(\boldsymbol{\omega}\) and \(\mathbf{r}^{\prime}_{\alpha}\) in the body-fixed frame. Also the following formulae are greatly simplified if \(\mathbf{r}^{\prime}_{\alpha} = (x_{\alpha}, y_{\alpha}, z_{\alpha})\) in the rotating body-fixed frame is written in the form \(\mathbf{r}^{\prime}_{\alpha} = (x_{\alpha,1}, x_{\alpha,2}, x_{\alpha,3})\) where the axes are defined by the numbers \(1, 2, 3\) rather than \(x,y,z\). In this notation the rotational kinetic energy is written as

    \[T_{rot} =\frac{1}{2} \sum_{\alpha}^{N} m_{\alpha}\left[\left(\sum_{i} \omega_{i}^{2}\right) \left(\sum_{k} x_{\alpha, k}^{2}\right)-\left(\sum_{i} \omega_{i} x_{\alpha, i}\right)\left(\sum_{j} \omega_{j} x_{\alpha, j}\right)\right]\]

    Assume the Kronecker delta relation

    \[\omega_i = \sum^3_j \omega_j \delta_{ij}\]

    where \(\delta_{ij} = 1\) if \(i = j\) and \(\delta_{ij} = 0\) if \(i \neq j\).

    Then the kinetic energy can be written more compactly

    \[\begin{align} T_{rot} & =\frac{1}{2} \sum_{\alpha}^{N} m_{\alpha}\left[\left(\sum_{i} \omega_{i}^{2}\right) \left(\sum_{k} x_{\alpha, k}^{2}\right)-\left(\sum_{i} \omega_{i} x_{\alpha, i}\right)\left(\sum_{j} \omega_{j} x_{\alpha, j}\right)\right] \notag \\ & = \frac{1}{2} \sum_{\alpha}^{N} \sum_{i, j}^{3} m_{\alpha} \left[ \left ( \omega_{i} \omega_{j} \delta_{i j}\right) \left(\sum_{k}^{3} x_{\alpha, k}^{2}\right)-\left(\omega_{i} x_{\alpha, i}\right)\left(\omega_{j} x_{\alpha, j}\right)\right] \notag \\ & = \frac{1}{2} \sum_{i, j}^{3} \omega_{i} \omega_{j}\left[\sum_{\alpha}^{N} m_{\alpha} \left[\delta_{i j} \left(\sum_{k}^{3} x_{\alpha, k}^{2}\right)-x_{\alpha, i} x_{\alpha, j}\right]\right] \end{align} \]

    The term in the outer square brackets is the inertia tensor defined in equation \((13.4.1)\) for a discrete body. The inertia tensor components for a continuous body are given by equation \((13.4.2)\).

    Thus the rotational component of the kinetic energy can be written in terms of the inertia tensor as

    \[T_{rot} = \frac{1}{2} \sum^3_{i,j} I_{ij} \omega_i\omega_j \label{13.68}\]

    Note that when the inertia tensor is diagonal, then the evaluation of the kinetic energy simplifies to

    \[T_{rot} = \frac{1}{2} \sum^3_i I_{ii} \omega^2_i\]

    which is the familiar relation in terms of the scalar moment of inertia \(I\) discussed in elementary mechanics.

    Equation \ref{13.68} also can be factored in terms of the angular momentum \(\mathbf{L}\).

    \[T_{rot} = \frac{1}{2} \sum_{i,j} I_{ij} \omega_i \omega_j = \frac{1}{2} \sum_i \omega_i \sum_j I_{ij} \omega_j = \frac{1}{2} \sum_i \omega_i L_i \label{13.70}\]

    As mentioned earlier, tensor algebra is an elegant and compact way of expressing such matrix operations. Thus it is possible to express the rotational kinetic energy as

    \[T_{rot} = \frac{1}{2} \left( \omega_1 \ \omega_2 \ \omega_3 \right) \cdot \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix} \cdot \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}\]

    \[T_{rot} \equiv \mathbf{T} = \frac{1}{2} \boldsymbol{\omega} \cdot \{\mathbf{I}\} \cdot \boldsymbol{\omega} \]

    where the rotational energy \(\mathbf{T}\) is a scalar. Using equation \((13.11.1)\) the rotational component of the kinetic energy also can be written as

    \[T_{rot} \equiv \mathbf{T} = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L} \]

    which is the same as given by \ref{13.70}. It is interesting to realize that even though \(\mathbf{L} = \{\mathbf{I}\} \cdot \boldsymbol{\omega}\) is the inner product of a tensor and a vector, it is a vector as illustrated by the fact that the inner product \(T_{rot} = \frac{1}{2} \boldsymbol{\omega}\cdot \mathbf{L} = \frac{1}{2} \boldsymbol{\omega} \cdot (\{\mathbf{I}\} \cdot \boldsymbol{\omega})\) is a scalar. Note that the translational kinetic energy \(T_{trans}\) must be added to the rotational kinetic energy \(T_{rot}\) to get the total kinetic energy as given by Equation \ref{13.61}.


    This page titled 13.12: Kinetic Energy of Rotating Rigid Body is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.