# 13.12: Kinetic Energy of Rotating Rigid Body

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

An important observable is the kinetic energy of rotation of a rigid body. Consider a rigid body composed of $$N$$ particles of mass $$m_{\alpha}$$ where $${\alpha} = 1, 2, 3, \dots N$$. If the body rotates with an instantaneous angular velocity $$\boldsymbol{\omega}$$ about some fixed point, with respect to the body coordinate system, and this point has an instantaneous translational velocity $$\mathbf{V}$$ with respect to the fixed (inertial) coordinate system, see Figure $$13.3.1$$, then the instantaneous velocity $$\mathbf{v}_{\alpha}$$ of the $${\alpha}^{th}$$ particle in the fixed frame of reference is given by

$\mathbf{v}_{\alpha} = \mathbf{V} + \mathbf{v}^{\prime\prime}_{\alpha} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} \label{13.56}$

However, for a rigid body, the velocity of a body-fixed point with respect to the body is zero, that is $$\mathbf{v}^{\prime\prime}_{\alpha} = 0$$, thus

$\mathbf{v}_{\alpha} = \mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}$

The total kinetic energy is given by

\begin{align} T & = & \sum^N_{\alpha} \frac{1}{2} m_{\alpha} \mathbf{v}_{\alpha} \cdot \mathbf{v}_{\alpha} = \sum^N_{\alpha} \frac{1}{2} m_{\alpha} (\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \cdot (\mathbf{V} + \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \notag \\ & = & \frac{1}{2} \sum^N_{\alpha} m_{\alpha} V^2 + \sum^N_i m_{\alpha} \mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} + \frac{1}{2} \sum^{N}_{\alpha} m_{\alpha} (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \cdot (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \label{13.58} \end{align}

This is a general expression for the kinetic energy that is valid for any choice of the origin from which the body-fixed vectors $$\mathbf{r}^{\prime}_{\alpha}$$ are measured. However, if the origin is chosen to be the center of mass, then, and only then, the middle term cancels. That is, since $$\mathbf{V} \cdot \boldsymbol{\omega}$$ is independent of the specific particle, then

$\sum^N_{\alpha} m_{\alpha} \mathbf{V} \cdot \boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha} = \mathbf{V} \cdot \boldsymbol{\omega} \times \left( \sum^{N}_{\alpha} m_{\alpha} \mathbf{r}^{\prime}_{\alpha} \right)$

But the definition of the center of mass is

$\sum_{\alpha} m_{\alpha} \mathbf{r}^{\prime} = M\mathbf{R}$

and $$\mathbf{R} = 0$$ in the body-fixed frame if the selected point in the body is the center of mass. Thus, when using the center of mass frame, the middle term of Equation \ref{13.58} is zero. Therefore, for the center of mass frame, the kinetic energy separates into two terms in the body-fixed frame

$T = T_{trans} + T_{rot} \label{13.61}$

where

$T_{trans} = \frac{1}{2} \sum^{N}_{\alpha} m_{\alpha} V^2$

$T_{rot} = \frac{1}{2} \sum^N_{\alpha} m_i (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \cdot (\boldsymbol{\omega} \times \mathbf{r}^{\prime}_{\alpha}) \notag$

The vector identity

$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{A} \times \mathbf{B}) = A^2B^2 − (\mathbf{A} \cdot \mathbf{B})^2$

can be used to simplify $$T_{rot}$$

$T_{rot} = \frac{1}{2} \sum^N_{\alpha} m_{\alpha} \left[ \omega^2 r^{\prime 2}_{\alpha} − (\boldsymbol{\omega} \cdot \mathbf{r}^{\prime}_{\alpha})^2 \right]$

The rotational kinetic energy $$T_{rot}$$ can be expressed in terms of components of $$\boldsymbol{\omega}$$ and $$\mathbf{r}^{\prime}_{\alpha}$$ in the body-fixed frame. Also the following formulae are greatly simplified if $$\mathbf{r}^{\prime}_{\alpha} = (x_{\alpha}, y_{\alpha}, z_{\alpha})$$ in the rotating body-fixed frame is written in the form $$\mathbf{r}^{\prime}_{\alpha} = (x_{\alpha,1}, x_{\alpha,2}, x_{\alpha,3})$$ where the axes are defined by the numbers $$1, 2, 3$$ rather than $$x,y,z$$. In this notation the rotational kinetic energy is written as

$T_{rot} =\frac{1}{2} \sum_{\alpha}^{N} m_{\alpha}\left[\left(\sum_{i} \omega_{i}^{2}\right) \left(\sum_{k} x_{\alpha, k}^{2}\right)-\left(\sum_{i} \omega_{i} x_{\alpha, i}\right)\left(\sum_{j} \omega_{j} x_{\alpha, j}\right)\right]$

Assume the Kronecker delta relation

$\omega_i = \sum^3_j \omega_j \delta_{ij}$

where $$\delta_{ij} = 1$$ if $$i = j$$ and $$\delta_{ij} = 0$$ if $$i \neq j$$.

Then the kinetic energy can be written more compactly

\begin{align} T_{rot} & =\frac{1}{2} \sum_{\alpha}^{N} m_{\alpha}\left[\left(\sum_{i} \omega_{i}^{2}\right) \left(\sum_{k} x_{\alpha, k}^{2}\right)-\left(\sum_{i} \omega_{i} x_{\alpha, i}\right)\left(\sum_{j} \omega_{j} x_{\alpha, j}\right)\right] \notag \\ & = \frac{1}{2} \sum_{\alpha}^{N} \sum_{i, j}^{3} m_{\alpha} \left[ \left ( \omega_{i} \omega_{j} \delta_{i j}\right) \left(\sum_{k}^{3} x_{\alpha, k}^{2}\right)-\left(\omega_{i} x_{\alpha, i}\right)\left(\omega_{j} x_{\alpha, j}\right)\right] \notag \\ & = \frac{1}{2} \sum_{i, j}^{3} \omega_{i} \omega_{j}\left[\sum_{\alpha}^{N} m_{\alpha} \left[\delta_{i j} \left(\sum_{k}^{3} x_{\alpha, k}^{2}\right)-x_{\alpha, i} x_{\alpha, j}\right]\right] \end{align}

The term in the outer square brackets is the inertia tensor defined in equation $$(13.4.1)$$ for a discrete body. The inertia tensor components for a continuous body are given by equation $$(13.4.2)$$.

Thus the rotational component of the kinetic energy can be written in terms of the inertia tensor as

$T_{rot} = \frac{1}{2} \sum^3_{i,j} I_{ij} \omega_i\omega_j \label{13.68}$

Note that when the inertia tensor is diagonal, then the evaluation of the kinetic energy simplifies to

$T_{rot} = \frac{1}{2} \sum^3_i I_{ii} \omega^2_i$

which is the familiar relation in terms of the scalar moment of inertia $$I$$ discussed in elementary mechanics.

Equation \ref{13.68} also can be factored in terms of the angular momentum $$\mathbf{L}$$.

$T_{rot} = \frac{1}{2} \sum_{i,j} I_{ij} \omega_i \omega_j = \frac{1}{2} \sum_i \omega_i \sum_j I_{ij} \omega_j = \frac{1}{2} \sum_i \omega_i L_i \label{13.70}$

As mentioned earlier, tensor algebra is an elegant and compact way of expressing such matrix operations. Thus it is possible to express the rotational kinetic energy as

$T_{rot} = \frac{1}{2} \left( \omega_1 \ \omega_2 \ \omega_3 \right) \cdot \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{pmatrix} \cdot \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$

$T_{rot} \equiv \mathbf{T} = \frac{1}{2} \boldsymbol{\omega} \cdot \{\mathbf{I}\} \cdot \boldsymbol{\omega}$

where the rotational energy $$\mathbf{T}$$ is a scalar. Using equation $$(13.11.1)$$ the rotational component of the kinetic energy also can be written as

$T_{rot} \equiv \mathbf{T} = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{L}$

which is the same as given by \ref{13.70}. It is interesting to realize that even though $$\mathbf{L} = \{\mathbf{I}\} \cdot \boldsymbol{\omega}$$ is the inner product of a tensor and a vector, it is a vector as illustrated by the fact that the inner product $$T_{rot} = \frac{1}{2} \boldsymbol{\omega}\cdot \mathbf{L} = \frac{1}{2} \boldsymbol{\omega} \cdot (\{\mathbf{I}\} \cdot \boldsymbol{\omega})$$ is a scalar. Note that the translational kinetic energy $$T_{trans}$$ must be added to the rotational kinetic energy $$T_{rot}$$ to get the total kinetic energy as given by Equation \ref{13.61}.

This page titled 13.12: Kinetic Energy of Rotating Rigid Body is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Douglas Cline via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.