Skip to main content
Physics LibreTexts

10.17: Energy Stored in a Magnetic Field

  • Page ID
    7910
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recall your derivation (Section 10.11) that the inductance of a long solenoid is \(\mu n^2 Al\). The energy stored in it, then, is \(\frac{1}{2}\mu n^2 AlI^2\). The volume of the solenoid is \(Al\), and the magnetic field is \(B = \mu n I\), or \(H = n I \). Thus we find that the energy stored per unit volume in a magnetic field is

    \[\label{10.17.1}\frac{B^2}{2\mu}=\frac{1}{2}BH = \frac{1}{2}\mu H^2.\]

    In a vacuum, the energy stored per unit volume in a magnetic field is \(\frac{1}{2}\mu_0H^2\)- even though the vacuum is absolutely empty!

    Equation 10.16.2 is valid in any isotropic medium, including a vacuum. In an anisotropic medium, \(\textbf{B}\text{ and }\textbf{H}\) are not in general parallel – unless they are both parallel to a crystallographic axis. More generally, in an anisotropic medium, the energy per unit volume is \(\frac{1}{ 2} \textbf{B}\cdot \textbf{H}\).

    Verify that the product of \(B\text{ and }H\) has the dimensions of energy per unit volume.


    This page titled 10.17: Energy Stored in a Magnetic Field is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?