$$\require{cancel}$$

# 3.4: Potential Energy of a Dipole in an Electric Field

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Refer again to Figure III.3. There is a torque on the dipole of magnitude $$pE \sin θ$$. In order to increase $$θ \text{ by }δθ$$ you would have to do an amount of work $$pE \sin θ\, δθ$$. The amount of work you would have to do to increase the angle between $$\textbf{p} \text{ and }\textbf{E}$$ from 0 to $$θ$$ would be the integral of this from 0 to $$θ$$, which is $$pE(1 − \cos θ)$$, and this is the potential energy of the dipole, provided one takes the potential energy to be zero when $$\textbf{p} \text{ and }\textbf{E}$$ are parallel. In many applications, writers find it convenient to take the potential energy (P.E.) to be zero when $$\textbf{p} \text{ and }\textbf{E}$$ perpendicular. In that case, the potential energy is

$\text{P.E}=-pE\cos \theta = -\textbf{p}\cdot \textbf{E}.\label{3.4.1}$

This is negative when $$θ$$ is acute and positive when $$θ$$ is obtuse. You should verify that the product of $$p \text{ and }E$$ does have the dimensions of energy.

3.4: Potential Energy of a Dipole in an Electric Field is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Jeremy Tatum via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.