Skip to main content
Physics LibreTexts

12.1: Trigonometry

  • Page ID
    24860
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \[e ^ { j \theta } = \cos \theta + j \sin \theta \nonumber \]

    \[\cos \theta = \frac { 1 } { 2 } \left( e ^ { j \theta } + e ^ { - j \theta } \right) \nonumber \]

    \[\sin \theta = \frac { 1 } { j 2 } \left( e ^ { j \theta } - e ^ { - j \theta } \right) \nonumber \]

    \[\cos ^ { 2 } \theta = \frac { 1 } { 2 } + \frac { 1 } { 2 } \cos 2 \theta \nonumber \]

    \[\sin ^ { 2 } \theta = \frac { 1 } { 2 } - \frac { 1 } { 2 } \cos 2 \theta \nonumber \]

    \[\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b \nonumber \]

    \[\cos (a \pm b)=\cos a \cos b \mp \sin a \sin b \nonumber \]

    Hyperbolic trigonometric functions:

    \[\sinh \theta=\frac{1}{2}\left(e^{+\theta}-e^{-\theta}\right) \nonumber \]

    \[\cosh \theta=\frac{1}{2}\left(e^{+\theta}+e^{-\theta}\right) \nonumber \]


    This page titled 12.1: Trigonometry is shared under a CC BY-SA license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) .

    • Was this article helpful?