Skip to main content
Physics LibreTexts

12.2: Vector Operators

  • Page ID
    24861
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    This section contains a summary of vector operators expressed in each of the three major coordinate systems:

    • Cartesian (\(x\),\(y\),\(z\))
    • cylindrical (\(\rho\),\(\phi\),\(z\))
    • spherical (\(r\),\(\theta\),\(\phi\))

    Associated basis vectors are identified using a caret (\(\hat{~}\)) over the symbol. The vector operand \({\bf A}\) is expressed in terms of components in the basis directions as follows:

    • Cartesian: \({\bf A} = \hat{\bf x}A_x + \hat{\bf y}A_y + \hat{\bf z}A_z\)
    • cylindrical: \({\bf A} = \hat{\bf \rho}A_{\rho} + \hat{\bf \phi}A_{\phi} + \hat{\bf z}A_z\)
    • spherical: \({\bf A} = \hat{\bf r}A_r + \hat{\bf \theta}A_{\theta} + \hat{\bf \phi}A_{\phi}\)

    Gradient

    Gradient in Cartesian coordinates:

    \begin{align} \nabla f &= \hat{\bf x}\frac{\partial f}{\partial x} + \hat{\bf y}\frac{\partial f}{\partial y} + \hat{\bf z}\frac{\partial f}{\partial z} & \end{align}

    Gradient in cylindrical coordinates:

    \begin{align} \nabla f &= \hat{\bf \rho}\frac{\partial f}{\partial \rho} +\hat{\bf \phi}\frac{1}{\rho}\frac{\partial f}{\partial \phi} + \hat{\bf z}\frac{\partial f}{\partial z} &\end{align}

    Gradient in spherical coordinates:

    \begin{align} \nabla f &= \hat{\bf r}\frac{\partial f}{\partial r} +\hat{\bf \theta}\frac{1}{r}\frac{\partial f}{\partial \theta} +\hat{\bf \phi}\frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi} &\end{align}

    Divergence

    Divergence in Cartesian coordinates:

    \begin{align} \nabla \cdot {\bf A} &= \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} &\end{align}

    Divergence in cylindrical coordinates:

    \begin{align} \nabla \cdot {\bf A} &= \frac{1}{\rho}\frac{\partial}{\partial \rho}\left(\rho A_{\rho}\right) +\frac{1}{\rho}\frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z} &\end{align}

    Divergence in spherical coordinates:

    \begin{align} \nabla \cdot {\bf A} &= ~~\frac{1}{r^2}\frac{\partial }{\partial r}\left(r^2 A_r\right) & \nonumber \\ &~~ +\frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}\left(A_{\theta}\sin\theta\right)& \nonumber \\ &~~ +\frac{1}{r\sin\theta}\frac{\partial A_{\phi}}{\partial \phi} & \end{align}

    Curl

    Curl in Cartesian coordinates:

    \begin{align} \nabla \times {\bf A} &= ~~\hat{\bf x}\left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) & \nonumber \\ &~~ +\hat{\bf y}\left( \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) & \nonumber \\ &~~ +\hat{\bf z}\left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) & \label{m0139_eCurlCart}\end{align}

    Curl in cylindrical coordinates:

    \begin{align} \nabla \times {\bf A} &= ~~\hat{\bf \rho}\left( \frac{1}{\rho}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) & \nonumber \\ &~~ +\hat{\bf \phi}\left( \frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho} \right) & \nonumber \\ &~~ +\hat{\bf z}\frac{1}{\rho}\left[ \frac{\partial}{\partial \rho}\left(\rho A_{\phi}\right) - \frac{\partial A_{\rho}}{\partial \phi} \right] &\end{align}

    Curl in spherical coordinates:

    \begin{align} \nabla \times {\bf A} &= ~~\hat{\bf r}\frac{1}{r\sin\theta} \left[ \frac{\partial}{\partial \theta}\left(A_{\phi}\sin\theta\right) - \frac{\partial A_{\theta}}{\partial \phi} \right] & \nonumber \\ &~~ +\hat{\bf \theta}\frac{1}{r}\left[ \frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r}\left(rA_{\phi}\right) \right] & \nonumber \\ &~~ +\hat{\bf \phi}\frac{1}{r}\left[ \frac{\partial}{\partial r}\left(r A_{\theta}\right) - \frac{\partial A_r}{\partial \theta} \right] \label{m0139_eCurlSph} &\end{align}

    Laplacian

    Laplacian in Cartesian coordinates:

    \begin{align} \nabla^2 f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} &\end{align}

    Laplacian in cylindrical coordinates:

    \begin{align} \nabla^2 f &= \frac{1}{\rho}\frac{\partial }{\partial \rho}\left(\rho\frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2}\frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2} &\end{align}

    Laplacian in spherical coordinates:

    \begin{align} \nabla^2 f &= ~~\frac{1}{r^2}\frac{\partial }{\partial r}\left(r^2\frac{\partial f}{\partial r} \right) & \nonumber \\ &~~ +\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\frac{\partial f}{\partial \theta}\sin\theta\right) & \nonumber \\ &~~ +\frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \phi^2} &\end{align}


    This page titled 12.2: Vector Operators is shared under a CC BY-SA license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) .

    • Was this article helpful?