12.3: Vector Identities
( \newcommand{\kernel}{\mathrm{null}\,}\)
Algebraic Identities
A⋅(B×C)=B⋅(C×A)=C⋅(A×B)A×(B×C)=B(A⋅C)−C(A⋅B)
Identities Involving Differential Operators
∇⋅(∇×A)=0∇×(∇f)=0∇×(fA)=f(∇×A)+(∇f)×A∇⋅(A×B)=B⋅(∇×A)−A⋅(∇×B)∇⋅(∇f)=∇2f∇×∇×A=∇(∇⋅A)−∇2A∇2A=∇(∇⋅A)−∇×(∇×A)
Divergence Theorem
Given a closed surface S enclosing a contiguous volume V, ∫V(∇⋅A)dv=∮SA⋅ds
where the surface normal ds is pointing out of the volume.
Stokes’ Theorem
Given a closed curve C bounding a contiguous surface S, ∫S(∇×A)⋅ds=∮CA⋅dl
where the direction of the surface normal ds is related to the direction of integration along C by the “right hand rule.”