1.7: Notation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

The list below describes notation used in this book.

• Vectors: Boldface is used to indicate a vector; e.g., the electric field intensity vector will typically appear as $$\mathbf{E}$$. Quantities not in boldface are scalars. When writing by hand, it is common to write “$$\overline { E }$$” or “$$\vec { E }$$ ” in lieu of “$$\mathbf{E}$$.”
• Unit vectors: A circumflex is used to indicate a unit vector; i.e., a vector having magnitude equal to one. For example, the unit vector pointing in the $$+x$$ direction will be indicated as $$\hat { \mathbf { x } }$$. In discussion, the quantity “ $$\hat { \mathbf { x } }$$” is typically spoken “$$x$$ hat.”
• Time: The symbol $$t$$ is used to indicate time.
• Position: The symbols $$(x, y, z), (\rho, \phi, z)$$, and $$(r, \theta, \phi )$$ indicate positions using the Cartesian, cylindrical, and polar coordinate systems, respectively. It is sometimes convenient to express position in a manner which is independent of a coordinate system; in this case, we typically use the symbol $$\mathbf { r }$$. For example, $$\mathbf { r } = \hat { \mathbf { x } } x + \hat { \mathbf { y } } y + \hat { \mathbf { z } } z$$ in the Cartesian coordinate system.
• Phasors: A tilde is used to indicate a phasor quantity; e.g., a voltage phasor might be indicated as $$\tilde { V }$$, and the phasor representation of $$\mathbf { E }$$ will be indicated as $$\tilde{\mathbf{E}}$$.
• Curves, surfaces, and volumes: These geometrical entities will usually be indicated in script; e.g., an open surface might be indicated as $$\mathcal { S }$$ and the curve bounding this surface might be indicated as $$\mathcal { C }$$. Similarly, the volume enclosed by a closed surface $$\mathcal { S }$$ may be indicated as $$\mathcal { V }$$.
• Integrations over curves, surfaces, and volumes will usually be indicated using a single integral sign with the appropriate subscript. For example:
$\int _ { \mathcal { C } } \cdots d l \nonumber \text{ is an integral over the curve } \mathcal { C } \nonumber$
$\int _ { \mathcal { S } } \cdots d s\nonumber \text{ is an integral over the surface } \mathcal { S } \nonumber$
$\int _ { \mathcal {V } } \cdots d s\nonumber \text{ is an integral over the volume } \mathcal { V }. \nonumber$
• Integrations over closed curves and surfaces will be indicated using a circle superimposed on the integral sign. For example:
$\oint _ { \mathcal { C } } \ldots d l\nonumber \text{ is an integral over the closed curve } \mathcal { C } \nonumber$
$\oint _ { \mathcal { S } } \ldots ds \nonumber \text{ is an integral over the closed surface } \mathcal { S } \nonumber$
A “closed curve” is one which forms an unbroken loop; e.g., a circle. A “closed surface” is one which encloses a volume with no openings; e.g., a sphere.
• The symbol “$$\cong$$” means “approximately equal to.” This symbol is used when equality exists, but is not being expressed with exact numerical precision. For example, the ratio of the circumference of a circle to its diameter is $$π$$, where $$\pi \cong 3.14$$.
• The symbol “$$\approx$$” also indicates “approximately equal to,” but in this case the two quantities are unequal even if expressed with exact numerical precision. For example, $$e ^ { x } = 1 + x + x ^ { 2 } / 2 + \ldots$$ as a infinite series, but $$e ^ { x } \approx 1 + x$$ for $$x \ll 1$$. Using this approximation $$e ^ { 0.1 } \approx 1.1$$, which is in good agreement with the actual value $$e ^ { 0.1 } \cong 1.1052$$.
• The symbol “$$∼$$” indicates “on the order of,” which is a relatively weak statement of equality indicating that the indicated quantity is within a factor of 10 or so the indicated value. For example, $$\mu \sim 10 ^ { 5 }$$ for a class of iron alloys, with exact values being being larger or smaller by a factor of 5 or so.
• The symbol “$$\triangleq$$” means “is defined as” or “is equal as the result of a definition.”
• Complex numbers: $$j \triangleq \sqrt { - 1 }$$.
• See Appendix C for notation used to identify commonly-used physical constants.

This page titled 1.7: Notation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Steven W. Ellingson (Virginia Tech Libraries' Open Education Initiative) .