7.4: Exercises
- Page ID
- 34558
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\)
For each of the following functions \(f(z)\), find the real and imaginary component functions \(u(x,y)\) and \(v(x,y)\), and hence verify whether they satisfy the Cauchy-Riemann equations.
- \(f(z) = z\)
- \(f(z) = z^2\)
- \(f(z) = |z|\)
- \(f(z) = |z|^2\)
- \(f(z) = \exp(z)\)
- \(f(z) = \cos(z)\)
- \(f(z) = 1/z\)
Exercise \(\PageIndex{2}\)
Suppose a function \(f(z)\) is well-defined and obeys the Cauchy-Riemann equations at a point \(z\), and the partial derivatives in the Cauchy-Riemann equations are continuous at that point. Show that the function is complex differentiable at that point. Hint: consider an arbitary displacement \(\Delta z = \Delta x + i \Delta y\).
Exercise \(\PageIndex{3}\)
Prove that products of analytic functions are analytic: if \(f(z)\) and \(g(z)\) are analytic in \(D \subset \mathbb{C}\), then \(f(z) g(z)\) is analytic in \(D\).
- Answer
-
We will use the Cauchy-Riemann equations. Decompose \(z\), \(f\), and \(g\) into real and imaginary parts as follows: \(z = x + i y\), \(f = u + i v\), and \(g = p + i q\). Since \(f(z)\) and \(g(z)\) are analytic in \(D\), they satisfy \[\begin{align} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y},\;\; -\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}\\ \frac{\partial p}{\partial x} &= \frac{\partial q}{\partial y},\;\; -\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}.\end{align}\] This holds for all \(z \in D\). Next, expand the product \(f(z)\,g(z)\) into real and imaginary parts: \[\begin{align}\begin{aligned} f(z)\,g(z) = A(x,y) + i B(x,y),\;\;\mathrm{where}\;\; \begin{cases}A = up - v q \\ B = uq + vp. \end{cases}\end{aligned}\end{align}\] Our goal is to prove that \(A\) and \(B\) satisfy the Cauchy-Riemann equations for \(x + i y \in D\), which would then imply that \(fg\) is analytic in \(D\). Using the product rule for derivatives: \[\begin{align} \frac{\partial A}{\partial x} &= \frac{\partial u}{\partial x} p + u \frac{\partial p}{\partial x} - \frac{\partial v}{\partial x} q - v \frac{\partial q}{\partial x} \\ &= \frac{\partial v}{\partial y} p + u \frac{\partial q}{\partial y} + \frac{\partial u}{\partial y} q + v \frac{\partial p}{\partial y} \\ \frac{\partial B}{\partial y} &= \frac{\partial u}{\partial y} q + u \frac{\partial q}{\partial y} + \frac{\partial v}{\partial y} p + v \frac{\partial p}{\partial y}.\end{align}\] By direct comparison, we see that the two expressions are equal. Similarly, \[\begin{align} \frac{\partial A}{\partial y} &= \frac{\partial u}{\partial y} p + u \frac{\partial p}{\partial y} - \frac{\partial v}{\partial y} q - v \frac{\partial q}{\partial y} \\ &= - \frac{\partial v}{\partial x} p - u \frac{\partial q}{\partial x} - \frac{\partial u}{\partial x} q - v \frac{\partial p}{\partial x} \\ \frac{\partial B}{\partial x} &= \frac{\partial u}{\partial x} q + u \frac{\partial q}{\partial x} + \frac{\partial v}{\partial x} p + v \frac{\partial p}{\partial x}.\end{align}\] These two are the negatives of each other. Q.E.D.
Exercise \(\PageIndex{4}\)
Prove that compositions of analytic functions are analytic: if \(f(z)\) is analytic in \(D \subset \mathbb{C}\) and \(g(z)\) is analytic in the range of \(f\), then \(g(f(z))\) is analytic in \(D\).
Exercise \(\PageIndex{5}\)
Prove that reciprocals of analytic functions are analytic away from poles: if \(f(z)\) is analytic in \(D \subset \mathbb{C}\), then \(1/f(z)\) is analytic everywhere in \(D\) except where \(f(z) = 0\).
Exercise \(\PageIndex{6}\)
Show that if \(f(z = x + iy) = u(x,y) + i v(x,y)\) satisfies the Cauchy-Riemann equations, then the real functions \(u\) and \(v\) each obey Laplace’s equation: \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2u}{\partial y^2} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.\] (Such functions are called “harmonic functions”.)
Exercise \(\PageIndex{7}\)
We can write the real and imaginary parts of a function in terms of polar coordinates: \(f(z) = u(r,\theta) + i v(r,\theta)\), where \(z = re^{i\theta}\). Show that the Cauchy-Riemann equations can be re-written in polar form as \[\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = - \frac{1}{r}\, \frac{\partial u}{\partial \theta}.\]