Skip to main content
Physics LibreTexts

3.9: The Telescope

  • Page ID
    57093
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A telescope enlarges the retinal image of a distant object. Like a compound microscope, it is also composed of an objective and an eyepiece as seen in Figure \(\PageIndex{1}\). The object in this figure is at a large but finite distance; therefore, an image is formed by the objective just after its second focal point. The eyepiece makes a virtual magnified image, to be viewed with a relaxed eye. Therefore, the intermediary image of the objective must be within the focal length \(f_{i}^{e}\) from the eyepiece. The final image is inverted.

    3.8.1.jpg
    Figure \(\PageIndex{1}\): Keplerian astronomical telescope.

    As seen earlier, the angular magnification is: \(\mathrm{MP}=\alpha_{a} / \alpha_{u}\) where \(\alpha_{u}\) is the half angle of the cone of light that would be collected without telescope and \(\alpha_{a}\) is the half angle of the apparent cone of rays coming from the virtual image of the eye piece. From triangles \(F_{o}^{o b j} B C\) and \(F_{i}^{e} D E\) in Figure \(\PageIndex{1}\) we see that \[\mathrm{MP}=-\frac{f_{i}^{o b j} \mid}{f_{i}^{e}} \nonumber \]

    3.8.2.jpg
    Figure \(\PageIndex{2}\): Ray angles for a telescope

    3.9: The Telescope is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?